KKL, Kruskal-Katona, and Monotone Nets

We generalize the Kahn--Kalai--Linial (KKL) theorem to random walks on Cayley and Schreier graphs, making progress on an open problem of Hoory, Linial, and Wigderson. In our generalization, the underlying group need not be abelian so long as the generating set is a union of conjugacy classes. An example corollary is that for every $f : \binom{[n]}{k} \to \{0,1\}$ with ${\bf E}[f]$ and $k/n$ bounded away from $0$ and $1$, there is a pair $1 \leq i < j \leq n$ such that ${\cal I}_{ij}(f) \geq \Omega(\frac{\log n}{n})$. Here ${\cal I}_{ij}(f)$ denotes the “influence” on $f$ of swapping the $i$th and $j$th coordinates. Using this corollary we obtain a “robust” version of the Kruskal--Katona theorem: Given a constant-density subset $A$ of a middle slice of the Hamming $n$-cube, the density of $\partial A$ is greater by at least $\Omega(\frac{\log n}{n})$, unless $A$ is noticeably correlated with a single coordinate. As an application of these results, we show that the set of functions $\{0, 1, x_1, \dots, x_n,...

[1]  Nisheeth K. Vishnoi,et al.  Integrality gaps for sparsest cut and minimum linear arrangement problems , 2006, STOC '06.

[2]  E. Friedgut,et al.  Sharp thresholds of graph properties, and the -sat problem , 1999 .

[3]  Nathan Linial,et al.  The influence of variables on Boolean functions , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[4]  Yuval Rabani,et al.  Improved lower bounds for embeddings into L1 , 2006, SODA '06.

[5]  M. Talagrand On Russo's Approximate Zero-One Law , 1994 .

[6]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[7]  D. Kleitman Families of Non-disjoint subsets* , 1966 .

[8]  P. Diaconis,et al.  Generating a random permutation with random transpositions , 1981 .

[9]  Nader H. Bshouty,et al.  On the Fourier spectrum of monotone functions , 1995, STOC '95.

[10]  Dvir Falik,et al.  Edge-Isoperimetric Inequalities and Influences , 2007, Comb. Probab. Comput..

[11]  Raphael Rossignol Threshold for monotone symmetric properties through a logarithmic Sobolev inequality , 2005, math/0511607.

[12]  I. Benjamini,et al.  Noise sensitivity of Boolean functions and applications to percolation , 1998 .

[13]  G. Katona A theorem of finite sets , 2009 .

[14]  Ryan O'Donnell,et al.  Learning Monotone Decision Trees in Polynomial Time , 2007, SIAM J. Comput..

[15]  G. Kalai,et al.  Every monotone graph property has a sharp threshold , 1996 .

[16]  Akira Maruoka,et al.  On learning monotone Boolean functions under the uniform distribution , 2006, Theor. Comput. Sci..

[17]  Jonathan L. Gross Every connected regular graph of even degree is a Schreier coset graph , 1977, J. Comb. Theory, Ser. B.

[18]  S. Safra,et al.  On the hardness of approximating minimum vertex cover , 2005 .

[19]  P. Diaconis,et al.  Time to reach stationarity in the Bernoulli-Laplace diffusion model , 1987 .

[20]  Subhash Khot,et al.  Vertex cover might be hard to approximate to within 2-/spl epsiv/ , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[21]  David Zuckerman,et al.  DETERMINISTIC EXTRACTORS FOR BIT-FIXING SOURCES AND EXPOSURE-RESILIENT CRYPTOGRAPHY , 2003 .

[22]  Guan-Yu Chen,et al.  On the log-Sobolev constant for the simple random walk on the n-cycle: the even cases , 2003 .

[23]  L. Russo An approximate zero-one law , 1982 .

[24]  Yuval Rabani,et al.  On the Hardness of Approximating Multicut and Sparsest-Cut , 2005, Computational Complexity Conference.

[25]  Terence Tao,et al.  Structure and Randomness in Combinatorics , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[26]  John Langford,et al.  On learning monotone Boolean functions , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[27]  G. Grimmett,et al.  Influence and sharp-threshold theorems for monotonic measures , 2005, math/0505057.

[28]  Nathan Linial,et al.  Collective Coin Flipping , 1989, Adv. Comput. Res..

[29]  L. Lovász Combinatorial problems and exercises , 1979 .

[30]  Tzong-Yow Lee,et al.  Logarithmic Sobolev inequality for some models of random walks , 1998 .

[31]  N. Linial,et al.  The influence of variables in product spaces , 1992 .

[32]  Ehud Friedgut,et al.  Boolean Functions With Low Average Sensitivity Depend On Few Coordinates , 1998, Comb..

[33]  P. Diaconis,et al.  LOGARITHMIC SOBOLEV INEQUALITIES FOR FINITE MARKOV CHAINS , 1996 .

[34]  Ran Raz,et al.  Fourier analysis for probabilistic communication complexity , 1995, computational complexity.

[35]  Peter Keevash,et al.  Shadows and intersections: Stability and new proofs , 2008, 0806.2023.