Fine-Grained Implicit Sentiment in Financial News: Uncovering Hidden Bulls and Bears
暂无分享,去创建一个
The field of sentiment analysis is currently dominated by the detection of attitudes in lexically explicit texts such as user reviews and social media posts. In objective text genres such as economic news, indirect expressions of sentiment are common. Here, a positive or negative attitude toward an entity must be inferred from connotational or real-world knowledge. To capture all expressions of subjectivity, a need exists for fine-grained resources and approaches for implicit sentiment analysis. We present the SENTiVENT corpus of English business news that contains token-level annotations for target spans, polar spans, and implicit polarity (positive, negative, or neutral investor sentiment, respectively). We both directly annotate polar expressions and induce them from existing schema-based event annotations to obtain event-implied implicit sentiment tuples. This results in a large dataset of 12,400 sentiment–target tuples in 288 fully annotated articles. We validate the created resource with an inter-annotator agreement study and a series of coarse- to fine-grained supervised deep-representation-learning experiments. Agreement scores show that our annotations are of substantial quality. The coarse-grained experiments involve classifying the positive, negative, and neutral polarity of known polar expressions and, in clause-based experiments, the detection of positive, negative, neutral, and no-polarity clauses. The gold coarse-grained experiments obtain decent performance (76% accuracy and 63% macro-F1) and clause-based detection shows decreased performance (65% accuracy and 57% macro-F1) with the confusion of neutral and no-polarity. The coarse-grained results demonstrate the feasibility of implicit polarity classification as operationalized in our dataset. In the fine-grained experiments, we apply the grid tagging scheme unified model for triplet extraction, which obtains state-of-the-art performance on explicit sentiment in user reviews. We observe a drop in performance on our implicit sentiment corpus compared to the explicit benchmark (22% vs. 76% F1). We find that the current models for explicit sentiment are not directly portable to our implicit task: the larger lexical variety within implicit opinion expressions causes lexical data scarcity. We identify common errors and discuss several recommendations for implicit fine-grained sentiment analysis. Data and source code are available.