RECURSIONS FOR THE COMPUTATION OF MULTIPOLE TRANSLATION AND ROTATION COEFFICIENTS FOR THE 3-D HELMHOLTZ EQUATION
暂无分享,去创建一个
[1] S. Stein. ADDITION THEOREMS FOR SPHERICAL WAVE FUNCTIONS , 1961 .
[2] Weng Cho Chew. Recurrence Relations for Three-Dimensional Scalar Addition Theorem , 1992 .
[3] Michael A. Epton,et al. Multipole Translation Theory for the Three-Dimensional Laplace and Helmholtz Equations , 1995, SIAM J. Sci. Comput..
[4] M. Gyure,et al. A prescription for the multilevel Helmholtz FMM , 1998 .
[5] P. Morse,et al. Methods of theoretical physics , 1955 .
[6] L. Greengard. The Rapid Evaluation of Potential Fields in Particle Systems , 1988 .
[7] Jack J. Dongarra,et al. Guest Editors Introduction to the top 10 algorithms , 2000, Comput. Sci. Eng..
[8] V. Rokhlin. Diagonal Forms of Translation Operators for the Helmholtz Equation in Three Dimensions , 1993 .
[9] Jussi Rahola,et al. Experiments On Iterative Methods And The Fast Multipole Method In Electromagnetic Scattering Calcula , 1998 .
[10] J. W. Humberston. Classical mechanics , 1980, Nature.
[11] Ramani Duraiswami,et al. Data Structures, Optimal Choice of Parameters, and Complexity Results for Generalized Multilevel Fast Multipole Methods in $d$ Dimensions , 2003 .
[12] Leslie Greengard,et al. A fast algorithm for particle simulations , 1987 .
[13] L. Greengard,et al. Accelerating fast multipole methods for the Helmholtz equation at low frequencies , 1998 .
[14] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[15] Weng Cho Chew,et al. Calculation of acoustical scattering from a cluster of scatterers , 1998 .
[16] E. Wigner. Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren , 1931 .
[17] Eric F Darve. The Fast Multipole Method , 2000 .
[18] Ramani Duraiswami,et al. Fast, Exact, and Stable Computation of Multipole Translation and Rotation Coefficients for the 3-D Helmholtz Equation , 2001 .
[19] Jian-Ming Jin,et al. Fast and Efficient Algorithms in Computational Electromagnetics , 2001 .
[20] Mark S. Gordon,et al. Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion , 1999 .
[21] Ramani Duraiswami,et al. Acoustical scattering from N spheres using a multilevel fast multipole method , 2003 .
[22] Parry Moon,et al. Field Theory Handbook , 1961 .
[23] Jiming Song,et al. Multilevel fast‐multipole algorithm for solving combined field integral equations of electromagnetic scattering , 1995 .
[24] K. Ruedenberg,et al. Rotation Matrices for Real Spherical Harmonics. Direct Determination by Recursion , 1998 .
[25] Ramani Duraiswami,et al. Computation of scattering from N spheres using multipole reexpansion. , 2002, The Journal of the Acoustical Society of America.
[26] Xiaobai Sun,et al. A Matrix Version of the Fast Multipole Method , 2001, SIAM Rev..