Differential Evolution and Deterministic Chaotic Series: A Detailed Study

This research represents a detailed insight into the modern and popular hybridization of deterministic chaotic dynamics and evolutionary computation. It is aimed at the influence of chaotic sequences on the performance of four selected Differential Evolution (DE) variants. The variants of interest were: original DE/Rand/1/ and DE/Best/1/ mutation schemes, simple parameter adaptive jDE, and the recent state of the art version SHADE. Experiments are focused on the extensive investigation of the different randomization schemes for the selection of individuals in DE algorithm driven by the nine different two-dimensional discrete deterministic chaotic systems, as the chaotic pseudorandom number generators. The performances of DE variants and their chaotic/non-chaotic versions are recorded in the one-dimensional settings of 10D and 15 test functions from the CEC 2015 benchmark, further statistically analyzed.

[1]  Leandro dos Santos Coelho,et al.  A self-adaptive chaotic differential evolution algorithm using gamma distribution for unconstrained global optimization , 2014, Appl. Math. Comput..

[2]  J. Sprott Chaos and time-series analysis , 2001 .

[3]  Janez Brest,et al.  Self-adaptive control parameters' randomization frequency and propagations in differential evolution , 2015, Swarm Evol. Comput..

[4]  Michal Pluhacek,et al.  Preliminary Study on the Randomization and Sequencing for the Chaos Embedded Heuristic , 2015, AECIA.

[5]  Michal Pluhacek,et al.  Differential Evolution and Chaotic Series , 2018, 2018 25th International Conference on Systems, Signals and Image Processing (IWSSIP).

[6]  L. Coelho,et al.  A novel chaotic particle swarm optimization approach using Hénon map and implicit filtering local search for economic load dispatch , 2009 .

[7]  Alex S. Fukunaga,et al.  Improving the search performance of SHADE using linear population size reduction , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[8]  Amir Hossein Gandomi,et al.  Chaotic cuckoo search , 2015, Soft Computing.

[9]  Luigi Fortuna,et al.  Chaotic sequences to improve the performance of evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[10]  Michal Pluhacek,et al.  On the Population Diversity for the Chaotic Differential Evolution , 2018, 2018 IEEE Congress on Evolutionary Computation (CEC).

[11]  Magdalena Metlicka,et al.  Chaos driven discrete artificial bee algorithm for location and assignment optimisation problems , 2015, Swarm Evol. Comput..

[12]  Roman Senkerik,et al.  Scheduling the Lot-Streaming Flowshop scheduling problem with setup time with the chaos-induced Enhanced Differential Evolution , 2013, 2013 IEEE Symposium on Differential Evolution (SDE).

[13]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[14]  Michal Pluhacek,et al.  Success-history based adaptive differential evolution algorithm with multi-chaotic framework for parent selection performance on CEC2014 benchmark set , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[15]  Giovanni Iacca,et al.  Disturbed Exploitation compact Differential Evolution for limited memory optimization problems , 2011, Inf. Sci..

[16]  Ponnuthurai Nagaratnam Suganthan,et al.  Problem Definitions and Evaluation Criteria for CEC 2015 Special Session on Bound Constrained Single-Objective Computationally Expensive Numerical Optimization , 2015 .

[17]  Ponnuthurai N. Suganthan,et al.  Recent advances in differential evolution - An updated survey , 2016, Swarm Evol. Comput..

[18]  Binggang Cao,et al.  Self-Adaptive Chaos Differential Evolution , 2006, ICNC.

[19]  Roman Senkerik,et al.  Chaos driven evolutionary algorithms for the task of PID control , 2010, Comput. Math. Appl..

[20]  Michal Pluhacek,et al.  Chaos particle swarm optimization with Eensemble of chaotic systems , 2015, Swarm Evol. Comput..

[21]  Ahmet Bedri Özer,et al.  CIDE: Chaotically Initialized Differential Evolution , 2010, Expert Syst. Appl..

[22]  Leandro dos Santos Coelho,et al.  A tuning strategy for multivariable PI and PID controllers using differential evolution combined with chaotic Zaslavskii map , 2011, Expert Syst. Appl..

[23]  Michal Pluhacek,et al.  Hybridization of Multi-chaotic Dynamics and Adaptive Control Parameter Adjusting jDE Strategy , 2016 .

[24]  Xin-She Yang,et al.  Firefly algorithm with chaos , 2013, Commun. Nonlinear Sci. Numer. Simul..