Demagnetization harmonic effects on the magnetization of granular systems on a macroscopic scale: the superconducting case

A model has been developed to determine the effective ac magnetic response of magnetic systems, taking into account the demagnetization effects arising from the sample geometry which determine the out-of-phase components of the applied fundamental frequency and higher harmonic components. Indeed, demagnetization fields and their intermodulation can significantly affect the ac magnetic response. This approach provides a system of self-consistent linear equations relating the magnetic response to the external magnetic field by means of nonlinear magnetic susceptibility. The model is extended to the magnetic response of granular systems in terms of the contributions of the individual grains and of the whole sample in the presence of demagnetization effects of the whole sample and of the grains on a macroscopic scale. In particular, our model is applied to a granular superconducting system. The comparison between the performed numerical simulations and the experimental data shows that the demagnetization fields of the single grains and of the whole sample, and their intermodulation, are relevant if magnetic measurements are used to extract detailed information about the analyzed material.

[1]  S. Pagano,et al.  Current driven transition from Abrikosov-Josephson to Josephson-like vortex in mesoscopic lateral S/S’/S superconducting weak links , 2016, Scientific Reports.

[2]  D. Mancusi Influence of grains on the electromagnetic ac response of superconducting materials , 2016 .

[3]  Ursula Dresdner,et al.  Magnetic Susceptibility Of Superconductors And Other Spin Systems , 2016 .

[4]  A. Nigro,et al.  Vortex pinning properties in Fe-chalcogenides , 2015 .

[5]  D. Mancusi,et al.  Influence of the interaction between the inter- and intragranular magnetic responses in the analysis of the ac susceptibility of a granular FeSe0.5Te0.5 superconductor , 2015 .

[6]  Jin-Kyu Lee,et al.  Magnetic multi-granule nanoclusters: A model system that exhibits universal size effect of magnetic coercivity , 2015, Scientific Reports.

[7]  S. Pagano,et al.  Probing transport mechanisms of BaFe2As2 superconducting films and grain boundary junctions by noise spectroscopy , 2014, Scientific Reports.

[8]  R. Fittipaldi,et al.  A new approach for improving global critical current density in Fe(Se0.5Te0.5) polycrystalline materials , 2012 .

[9]  Jian-lin Luo,et al.  Grain geometry effect on the magnetic properties of a granular iron-based superconductor LaFeAsO1−xFx , 2012 .

[10]  G. Chen,et al.  Intergrain Effects in the AC Susceptibility of Polycrystalline LaFeAsO0.94F0.06 , 2011 .

[11]  H. Hosono,et al.  Inter-granular current in iron-oxypnictide superconductors , 2010 .

[12]  G. Chen,et al.  Intergrain effects in the AC susceptibility of polycrystalline LaFeAsO_{0.94}F_{0.06}: comparison with cuprate superconductors , 2010, 1005.3965.

[13]  W. Wernsdorfer,et al.  Magnetic anisotropy of embedded Co nanoparticles: Influence of the surrounding matrix , 2010 .

[14]  Jian-lin Luo,et al.  Granularity and vortex dynamics in LaFeAsO 0.92 F 0.08 probed by harmonics of the ac magnetic susceptibility , 2008 .

[15]  C. Navau,et al.  Effective penetration depths of a thin type-II superconducting strip , 2008 .

[16]  M. Polichetti,et al.  A new method to detect the vortex glass phase and its evidence in YBCO , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[17]  Yuval Golan,et al.  The role of interparticle and external forces in nanoparticle assembly. , 2008, Nature materials.

[18]  C. Navau,et al.  Perpendicular critical-state susceptibility of square superconducting films , 2008 .

[19]  Antoinette Tordesillas,et al.  Granular And Complex Materials , 2007 .

[20]  R. Flükiger,et al.  Effect of the amplitude of the AC magnetic field on the vortex dynamics: A quantitative analysis in Nb and NbTi polycrystalline samples , 2007 .

[21]  M. Polichetti,et al.  Response of glass and liquid phases in the vortex lattice to an external AC magnetic field at different frequencies , 2004, cond-mat/0402440.

[22]  C. Senatore,et al.  Non-linear magnetic response of MgB2 bulk superconductors , 2004 .

[23]  P. Kováč,et al.  A study of coupling loss on bi-columnar BSCCO/Ag tapes through ac susceptibility measurements , 2003, cond-mat/0310158.

[24]  C. Senatore,et al.  Harmonics of the AC susceptibility as probes to differentiate the various creep models , 2003, cond-mat/0309333.

[25]  F. Fiorillo,et al.  Measurement and characterization of magnetic materials , 2004 .

[26]  H. Tolentino,et al.  Structural, magnetic, and transport properties of Co nanoparticles within a Cu matrix , 2003 .

[27]  T. D. Matteo,et al.  Vortex dynamics and pinning properties analysis of MgB 2 bulk samples by ac susceptibility measurements , 2002, cond-mat/0207580.

[28]  S. Dou,et al.  AC susceptibility of type-II superconductor strips with geometric barrier , 2002 .

[29]  S Pace,et al.  Vortex dynamics and pinning properties analysis of MgB2 bulk samples by ac susceptibility measurements , 2002 .

[30]  I. Maksimov,et al.  Magnetization curves and ac susceptibilities in type-II superconductors: geometry-independent similarity and effect of irreversibility mechanisms , 2001 .

[31]  C. Ong,et al.  Fundamental and harmonic AC responses to different annealing rates of Bi2Sr2CaCu2O8 single crystals , 2001 .

[32]  C. Ong,et al.  Fundamental and harmonic AC responses to di erent annealing rates of Bi 2 Sr 2 CaCu 2 O 8 single crystals , 2001 .

[33]  C. K. Ong,et al.  ac susceptibility of superconductors with geometric barrier , 2000 .

[34]  H. Braun,et al.  Inter- and intragranular effects in superconducting compacted platinum powders , 2000, cond-mat/0009434.

[35]  S. Farinon,et al.  Ac losses in multifilamentary high-TC tapes due to a perpendicular ac magnetic field , 2000 .

[36]  S. Pace,et al.  Field and frequency dependences of ac magnetic measurements as a probe of nonlinear flux diffusion in high-temperature superconductors , 2000 .

[37]  Pasquale Fabbricatore,et al.  Magnetic flux shielding in superconducting strip arrays , 2000 .

[38]  H. Fukunaga,et al.  Effect of strength of intergrain exchange interaction on magnetic properties of nanocomposite magnets , 1999, IEEE International Magnetics Conference.

[39]  D. Gioacchino,et al.  Nonuniversal temperature dependencies of the low-frequency ac magnetic susceptibility in high-T c superconductors , 1999 .

[40]  J. Osman,et al.  Calculation of nonlinear magnetic susceptibility tensors for a ferromagnet , 1999 .

[41]  D. Altbir,et al.  DIPOLAR INTERACTION AND MAGNETIC ORDERING IN GRANULAR METALLIC MATERIALS , 1998 .

[42]  M. Knobel,et al.  Influence of the distribution of magnetic moments on the magnetization and magnetoresistance in granular alloys , 1997 .

[43]  F. Gömöry Characterization of high-temperature superconductors by AC susceptibility measurements , 1997 .

[44]  W. Kelin,et al.  MAGNETIC PROPERTIES OF COBALT CLUSTERS EMBEDDED IN A COPPER MATRIX , 1997 .

[45]  H. Braun,et al.  Nonlinear AC susceptibility and critical current of (Y1−xPrx)Ba2Cu3O7−δ ceramics , 1995 .

[46]  R. Cherubini,et al.  INTRA AND INTERGRAIN VORTEX EXCITATIONS IN PROTON IMPLANTED BULK YBCO SLABS , 1994 .

[47]  Clem,et al.  Hysteretic ac losses and susceptibility of thin superconducting disks. , 1994, Physical review. B, Condensed matter.

[48]  van Kempen H,et al.  Nonlinear interaction between an external microwave field and weakly coupled superconducting grains. , 1994, Physical review. B, Condensed matter.

[49]  Xiao,et al.  Transition-metal granular solids: Microstructure, magnetic properties, and giant magnetoresistance. , 1994, Physical review. B, Condensed matter.

[50]  Dombre,et al.  Flux creep and harmonic generation. , 1994, Physical review. B, Condensed matter.

[51]  Shatz,et al.  Universal behavior of harmonic susceptibilities in type-II superconductors. , 1993, Physical review. B, Condensed matter.

[52]  Young,et al.  Giant magnetoresistance in heterogeneous Cu-Co alloys. , 1992, Physical review letters.

[53]  Ellis,et al.  Magnetism of Fe impurities in alkaline-earth metals and Al. , 1992, Physical review. B, Condensed matter.

[54]  Ronald B. Goldfarb,et al.  Demagnetizing factors for cylinders , 1991 .

[55]  F. Gömöry Low frequency magnetic measurements on high-Tc superconducting materials , 1991 .

[56]  Ronald B. Goldfarb,et al.  Alternating-Field Susceptometry and Magnetic Susceptibility of Superconductors , 1991 .

[57]  Ishida,et al.  Fundamental and harmonic susceptibilities of YBa2Cu3O7- delta. , 1990, Physical review. B, Condensed matter.

[58]  Peterson Magnetization of imperfect superconducting grains. , 1989, Physical review. B, Condensed matter.

[59]  P. Dubots,et al.  Critical currents of powder-based superconducting wires☆ , 1988 .

[60]  J. Clem Granular and superconducting-glass properties of the high-temperature superconductors , 1988 .

[61]  F. Gömöry,et al.  Determination of shielding current density in bulk cylindrical samples of high-Tc superconductors from AC susceptibility measurements , 1988 .

[62]  J. Gittleman,et al.  Magnetic Properties of Granular Nickel Films , 1972 .

[63]  C. P. Bean,et al.  Magnetization of High-Field Superconductors , 1964 .

[64]  M. Strongin,et al.  FILAMENTARY STRUCTURE IN SUPERCONDUCTORS , 1963 .

[65]  C. P. Bean Magnetization of hard superconductors , 1962 .