Equal-Norm Tight Frames with Erasures

Equal-norm tight frames have been shown to be useful for robust data transmission. The losses in the network are modeled as erasures of transmitted frame coefficients. We give the first systematic study of the general class of equal-norm tight frames and their properties. We search for efficient constructions of such frames. We show that the only equal-norm tight frames with the group structure and one or two generators are the generalized harmonic frames. Finally, we give a complete classification of frames in terms of their robustness to erasures.

[1]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[2]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[3]  Thomas L. Marzetta,et al.  Systematic design of unitary space-time constellations , 2000, IEEE Trans. Inf. Theory.

[4]  Yonina C. Eldar,et al.  Optimal tight frames and quantum measurement , 2002, IEEE Trans. Inf. Theory.

[5]  Martin Vetterli,et al.  Oversampled filter banks , 1998, IEEE Trans. Signal Process..

[6]  Yonina C. Eldar,et al.  Geometrically uniform frames , 2001, IEEE Trans. Inf. Theory.

[7]  Babak Hassibi,et al.  Representation theory for high-rate multiple-antenna code design , 2001, IEEE Trans. Inf. Theory.

[8]  P. Casazza THE ART OF FRAME THEORY , 1999, math/9910168.

[9]  John J. Benedetto,et al.  Wavelet periodicity detection algorithms , 1998, Optics & Photonics.

[10]  Vivek K. Goyal,et al.  Quantized frame expansions as source-channel codes for erasure channels , 1999, Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096).

[11]  Deguang Han,et al.  Frames, bases, and group representations , 2000 .

[12]  Vivek K Goyal,et al.  Quantized Frame Expansions with Erasures , 2001 .

[13]  I. M. Glazman,et al.  Theory of linear operators in Hilbert space , 1961 .

[14]  M. J. Gans,et al.  On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas , 1998, Wirel. Pers. Commun..

[15]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[16]  Helmut Bölcskei,et al.  Frame-theoretic analysis of oversampled filter banks , 1998, IEEE Trans. Signal Process..

[17]  Vivek K. Goyal,et al.  Optimal multiple description transform coding of Gaussian vectors , 1998, Proceedings DCC '98 Data Compression Conference (Cat. No.98TB100225).

[18]  Vivek K. Goyal,et al.  Quantized Overcomplete Expansions in IRN: Analysis, Synthesis, and Algorithms , 1998, IEEE Trans. Inf. Theory.

[19]  Peter G. Casazza,et al.  Modern tools for weyl-heisenberg (gabor) frame theory , 2001 .

[20]  James R. Holub,et al.  Pre-frame operators, Besselian frames, and near-Riesz bases in Hilbert spaces , 1994 .

[21]  Christopher Heil,et al.  Continuous and Discrete Wavelet Transforms , 1989, SIAM Rev..

[22]  Vivek K Goyal,et al.  Multiple description transform coding: robustness to erasures using tight frame expansions , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).