On the lower semicontinuity of quasiconvex integrals in SBV W , R k
暂无分享,去创建一个
[1] L. Ambrosio,et al. On the relaxation in BV(Ω; Rm) of quasi-convex integrals , 1992 .
[2] Irene Fonseca,et al. Quasi-convex integrands and lower semicontinuity in L 1 , 1992 .
[3] G. Alberti. A Lusin Type Theorem for Gradients , 1991 .
[4] L. Ambrosio. Existence theory for a new class of variational problems , 1990 .
[5] Luigi Ambrosio,et al. A general chain rule for distributional derivatives , 1990 .
[6] L. Ambrosio. Variational problems in SBV and image segmentation , 1989 .
[7] W. Ziemer. Weakly differentiable functions , 1989 .
[8] Nicola Fusco,et al. Semicontinuity problems in the calculus of variations , 1984 .
[9] Bernard Dacorogna,et al. Weak Continuity and Weak Lower Semicontinuity of Non-Linear Functionals , 1982 .
[10] J. Ball. Convexity conditions and existence theorems in nonlinear elasticity , 1976 .
[11] H. Fédérer. Geometric Measure Theory , 1969 .
[12] Charles B. Morrey,et al. QUASI-CONVEXITY AND THE LOWER SEMICONTINUITY OF MULTIPLE INTEGRALS , 1952 .
[13] V. Sverák,et al. Rank-one convexity does not imply quasiconvexity , 1992, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[14] D. Pallara. Nuovi teoremi sulle funzioni a variazione limitata , 1990 .
[15] S. Müller. Higher integrability of determinants and weak convergence in L1. , 1990 .
[16] E. Giorgi,et al. Un nuovo tipo di funzionale del calcolo delle variazioni , 1988 .
[17] Decision Systems.,et al. Variational problems in SBV , 1988 .
[18] E. Giusti. Minimal surfaces and functions of bounded variation , 1977 .
[19] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[20] Yu. G. Reshetnyak. On the stability of conformal mappings in multidimensional spaces , 1967 .
[21] C. B. Morrey. Multiple Integrals in the Calculus of Variations , 1966 .