On the lower semicontinuity of quasiconvex integrals in SBV W , R k

[1]  L. Ambrosio,et al.  On the relaxation in BV(Ω; Rm) of quasi-convex integrals , 1992 .

[2]  Irene Fonseca,et al.  Quasi-convex integrands and lower semicontinuity in L 1 , 1992 .

[3]  G. Alberti A Lusin Type Theorem for Gradients , 1991 .

[4]  L. Ambrosio Existence theory for a new class of variational problems , 1990 .

[5]  Luigi Ambrosio,et al.  A general chain rule for distributional derivatives , 1990 .

[6]  L. Ambrosio Variational problems in SBV and image segmentation , 1989 .

[7]  W. Ziemer Weakly differentiable functions , 1989 .

[8]  Nicola Fusco,et al.  Semicontinuity problems in the calculus of variations , 1984 .

[9]  Bernard Dacorogna,et al.  Weak Continuity and Weak Lower Semicontinuity of Non-Linear Functionals , 1982 .

[10]  J. Ball Convexity conditions and existence theorems in nonlinear elasticity , 1976 .

[11]  H. Fédérer Geometric Measure Theory , 1969 .

[12]  Charles B. Morrey,et al.  QUASI-CONVEXITY AND THE LOWER SEMICONTINUITY OF MULTIPLE INTEGRALS , 1952 .

[13]  V. Sverák,et al.  Rank-one convexity does not imply quasiconvexity , 1992, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[14]  D. Pallara Nuovi teoremi sulle funzioni a variazione limitata , 1990 .

[15]  S. Müller Higher integrability of determinants and weak convergence in L1. , 1990 .

[16]  E. Giorgi,et al.  Un nuovo tipo di funzionale del calcolo delle variazioni , 1988 .

[17]  Decision Systems.,et al.  Variational problems in SBV , 1988 .

[18]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[19]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[20]  Yu. G. Reshetnyak On the stability of conformal mappings in multidimensional spaces , 1967 .

[21]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .