Efficient and rapid numerical evaluation of the two-electron, four-center Coulomb integrals using nonlinear transformations and useful properties of Sine and Bessel functions

Two-electron, four-center Coulomb integrals are undoubtedly the most difficult type involved in ab initio and density functional theory molecular structure calculations. Millions of such integrals are required for molecules of interest; therefore rapidity is the primordial criterion when the precision has been reached. This work presents an extremely efficient approach for improving convergence of semi-infinite very oscillatory integrals, based on the nonlinear D-transformation and some useful properties of spherical Bessel, reduced Bessel, and sine functions. The new method is now shown to be applicable to evaluating the two-electron, four-center Coulomb integrals over B functions. The section with numerical results illustrates the unprecedented efficiency of the new approach in evaluating the integrals of interest.

[1]  G. Arfken,et al.  Mathematical methods for physicists 6th ed. , 1996 .

[2]  M. Weissbluth Atoms and Molecules , 1978 .

[3]  Percy Deift,et al.  Review: Shmuel Agmon, Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of $N$-body Schrödinger operators , 1985 .

[4]  Didier Sébilleau On the computation of the integrated products of three spherical harmonics , 1998 .

[5]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[6]  H. L. Cox,et al.  On the Calculation of Multicenter Two‐Electron Repulsion Integrals Involving Slater Functions , 1964 .

[7]  V. Saunders Molecular Integrals for Gaussian Type Functions , 1983 .

[8]  Yu-lin Xu,et al.  Fast evaluation of the Gaunt coefficients , 1996, Math. Comput..

[9]  P. Wynn,et al.  On a Device for Computing the e m (S n ) Transformation , 1956 .

[10]  E. J. Weniger,et al.  The Fourier transforms of some exponential‐type basis functions and their relevance to multicenter problems , 1983 .

[11]  H. P. Trivedi,et al.  Fourier transform of a two-center product of exponential-type orbitals. Application to one- and two-electron multicenter integrals , 1983 .

[12]  Herbert H. H. Homeier,et al.  Möbius-Type Quadrature of Electron Repulsion Integrals with B Functions , 1990 .

[13]  Avram Sidi,et al.  The numerical evaluation of very oscillatory infinite integrals by extrapolation , 1982 .

[14]  David Levin,et al.  Two New Classes of Nonlinear Transformations for Accelerating the Convergence of Infinite Integrals and Series , 1981 .

[15]  Hassan Safouhi,et al.  Non‐linear transformations for rapid and efficient evaluation of multicenter bielectronic integrals over B functions , 1999 .

[16]  Avram Sidi,et al.  Extrapolation Methods for Oscillatory Infinite Integrals , 1980 .

[17]  Grotendorst,et al.  Numerical evaluation of molecular one- and two-electron multicenter integrals with exponential-type orbitals via the Fourier-transform method. , 1988, Physical review. A, General physics.

[18]  E. J. Weniger,et al.  Addition theorems for B functions and other exponentially declining functions , 1989 .

[19]  Herbert H. H. Homeier,et al.  Numerical integration of functions with a sharp peak at or near one boundary using Mo¨bius transformations , 1990 .

[20]  S. F. Boys,et al.  The integral formulae for the variational solution of the molecular many-electron wave equation in terms of Gaussian functions with direct electronic correlation , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[21]  Yu-lin Xu,et al.  Fast evaluation of Gaunt coefficients: recursive approach , 1997 .

[22]  G. Shilov,et al.  DEFINITION AND SIMPLEST PROPERTIES OF GENERALIZED FUNCTIONS , 1964 .

[23]  Hassan Safouhi,et al.  The HD and HD methods for accelerating the convergence of three-center nuclear attraction and four-center two-electron Coulomb integrals over B functions and their convergence properties , 2000 .

[24]  Herbert H. H. Homeier,et al.  Improved quadrature methods for three‐center nuclear attraction integrals with exponential‐type basis functions , 1991 .

[25]  Herbert H. H. Homeier,et al.  Some Properties of the Coupling Coefficients of Real Spherical Harmonics and Their Relation to Gaunt Coefficients , 1996 .

[26]  Hassan Safouhi,et al.  Efficient evaluation of Coulomb integrals: the nonlinear D- and -transformations , 1998 .

[27]  E. J. Weniger,et al.  Numerical properties of the convolution theorems of B functions , 1983 .

[28]  J. C. Slater Atomic Shielding Constants , 1930 .

[29]  G. Shortley,et al.  The Theory of Atomic Spectra , 1935 .

[30]  Yu-lin Xu,et al.  Efficient Evaluation of Vector Translation Coefficients in Multiparticle Light-Scattering Theories , 1998 .

[31]  J. A. Gaunt The Triplets of Helium , 1929 .

[32]  Herbert H. H. Homeier,et al.  Improved quadrature methods for the Fourier transform of a two-center product of exponential-type basis functions , 1992 .

[33]  David Levin,et al.  Development of non-linear transformations for improving convergence of sequences , 1972 .

[34]  Shmuel Agmon,et al.  Lectures on exponential decay of solutions of second order elliptic equations : bounds on eigenfunctions of N-body Schrödinger operators , 1983 .

[35]  E. Filter,et al.  Translations of fields represented by spherical-harmonic expansions for molecular calculations , 1975 .

[36]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[37]  John C. Slater,et al.  Analytic Atomic Wave Functions , 1932 .

[38]  E. Steinborn,et al.  Extremely compact formulas for molecular two-center one-electron integrals and Coulomb integrals over Slater-type atomic orbitals , 1978 .

[39]  E. J. Weniger,et al.  Programs for the coupling of spherical harmonics , 1984 .

[40]  Clemens C. J. Roothaan,et al.  New Developments in Molecular Orbital Theory , 1951 .