Strong Convergence of the Parzen-Type Probabilistic Neural Network in a Time-Varying Environment

In this paper general regression neural networks are applied to handle nonstationary noise. Strong convergence is established. Experiments conducted on synthetic data show good performance in the case of finite length of data samples.

[1]  L. Rutkowski Real-time identification of time-varying systems by non-parametric algorithms based on Parzen kernels , 1985 .

[2]  Leszek Rutlowski Sequential pattern recognition procedures derived from multiple Fourier series , 1988 .

[3]  Janusz T. Starczewski,et al.  Interval Type 2 Neuro-Fuzzy Systems Based on Interval Consequents , 2003 .

[4]  L. Rutkowski,et al.  Nonparametric recovery of multivariate functions with applications to system identification , 1985, Proceedings of the IEEE.

[5]  W. Härdle Applied Nonparametric Regression , 1991 .

[6]  Leszek Rutkowski,et al.  A fast training algorithm for neural networks , 1998 .

[7]  L. Rutkowski On nonparametric identification with prediction of time-varying systems , 1984 .

[8]  Michel Loève,et al.  Probability Theory I , 1977 .

[9]  W. Greblicki,et al.  An orthogonal series estimate of time-varying regression , 1983 .

[10]  Leszek Rutkowski,et al.  Identification of MISO nonlinear regressions in the presence of a wide class of disturbances , 1991, IEEE Trans. Inf. Theory.

[11]  W. Härdle Applied Nonparametric Regression , 1992 .

[12]  W. Greblicki,et al.  Density-free Bayes risk consistency of nonparametric pattern recognition procedures , 1981, Proceedings of the IEEE.

[13]  L. Rutkowski,et al.  A neuro-fuzzy controller with a compromise fuzzy reasoning , 2002 .

[14]  L. Rutkowski Sequential Estimates of a Regression Function by Orthogonal Series with Applications in Discrimination , 1981 .

[15]  L. Rutkowski Nonparametric identification of quasi-stationary systems , 1985 .

[16]  Janusz T. Starczewski,et al.  Connectionist Structures of Type 2 Fuzzy Inference Systems , 2001, PPAM.

[17]  L. Rutkowski Application of multiple Fourier series to identification of multivariable non-stationary systems , 1989 .

[18]  Leszek Rutkowski Multiple Fourier series procedures for extraction of nonlinear regressions from noisy data , 1993, IEEE Trans. Signal Process..

[19]  Leszek Rutkowski,et al.  A new method for system modelling and pattern classification , 2004 .

[20]  Robert Nowicki Rough Sets in the Neuro-Fuzzy Architectures Based on Monotonic Fuzzy Implications , 2004, ICAISC.

[21]  L. Rutkowski On-line identification of time-varying systems by nonparametric techniques , 1982 .

[22]  Krzysztof Patan,et al.  Optimal training strategies for locally recurrent neural networks , 2011 .

[23]  E. Rafajłowicz,et al.  On optimal global rate of convergence of some nonparametric identification procedures , 1989 .

[24]  Rafal Scherer Boosting Ensemble of Relational Neuro-fuzzy Systems , 2006, ICAISC.

[25]  Leszek Rutkowski,et al.  ORTHOGONAL SERIES ESTIMATES OF A REGRESSION FUNCTION WITH APPLICATIONS IN SYSTEM IDENTIFICATION , 1982 .

[26]  Robert Cierniak,et al.  On image compression by competitive neural networks and optimal linear predictors , 2000, Signal Process. Image Commun..

[27]  Donald F. Specht,et al.  Probabilistic neural networks , 1990, Neural Networks.

[28]  Leszek Rutkowski On Bayes Risk Consistent Pattern Recognition Procedures in a Quasi-Stationary Environment , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Leszek Rutkowski,et al.  A general approach to neuro-fuzzy systems , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[30]  Donald F. Specht,et al.  A general regression neural network , 1991, IEEE Trans. Neural Networks.

[31]  Leszek Rutkowski Nonparametric Procedures for Identification and Control of Linear Dynamic Systems , 1988 .

[32]  Leszek Rutkowski,et al.  A general approach for nonparametric fitting of functions and their derivatives with applications to linear circuits identification , 1986 .

[33]  L. Rutkowski,et al.  Nonparametric fitting of multivariate functions , 1986 .

[34]  L. Rutkowski Non-parametric learning algorithms in time-varying environments☆ , 1989 .

[35]  Leszek Rutkowski,et al.  On system identification by nonparametric function fitting , 1982 .

[36]  W. Greblicki,et al.  Nonparametric system identification , 2008 .