A KAM Theorem with Applications to Partial Differential Equations of Higher Dimensions

[1]  Dario Bambusi,et al.  Birkhoff normal form for partial differential equations with tame modulus , 2006 .

[2]  Xiaoping Yuan,et al.  Quasi-periodic solutions of completely resonant nonlinear wave equations ✩ , 2006 .

[3]  Xiaoping Yuan,et al.  Quasi-periodic solutions of nonlinear wave equations with a prescribed potential , 2006 .

[4]  Jiangong You,et al.  A KAM Theorem for Hamiltonian Partial Differential Equations in Higher Dimensional Spaces , 2006 .

[5]  M. Procesi QUASI-PERIODIC SOLUTIONS FOR COMPLETELY RESONANT NON-LINEAR WAVE EQUATIONS IN 1D AND 2D , 2005 .

[6]  Jean Bourgain,et al.  Green's Function Estimates for Lattice Schrödinger Operators and Applications. , 2004 .

[7]  M. Berti,et al.  Cantor families of periodic solutions for completely resonant nonlinear wave equations , 2004, math/0410618.

[8]  G. Gentile,et al.  Periodic Solutions for Completely Resonant Nonlinear Wave Equations with Dirichlet Boundary Conditions , 2004, math/0402262.

[9]  Xiaoping Yuan Quasi-periodic solutions of nonlinear Schrödinger equations of higher dimension , 2003 .

[10]  Dario Bambusi,et al.  A Birkhoff-Lewis-Type Theorem for Some Hamiltonian PDEs , 2003, SIAM J. Math. Anal..

[11]  Dario Bambusi,et al.  Birkhoff Normal Form for Some Nonlinear PDEs , 2003 .

[12]  J. Pöschel On the construction of almost periodic solutions for a nonlinear Schrödinger equation , 2002, Ergodic Theory and Dynamical Systems.

[13]  Dario Bambusi,et al.  Families of Periodic Solutions of Resonant PDEs , 2001, J. Nonlinear Sci..

[14]  J. Bricmont,et al.  Renormalization Group¶and the Melnikov Problem for PDE's , 2001, math-ph/0102036.

[15]  Luigi Chierchia,et al.  KAM Tori for 1D Nonlinear Wave Equations¶with Periodic Boundary Conditions , 1999, chao-dyn/9904036.

[16]  Jean Bourgain,et al.  QUASI-PERIODIC SOLUTIONS OF HAMILTONIAN PERTURBATIONS OF 2D LINEAR SCHRODINGER EQUATIONS , 1998 .

[17]  J. Pöschel,et al.  Quasi-periodic solutions for a nonlinear wave equation , 1996 .

[18]  Alexander I. Bobenko,et al.  The nonlinear Klein-Gordon equation on an interval as a perturbed Sine-Gordon equation , 1995 .

[19]  Walter Craig,et al.  Newton's method and periodic solutions of nonlinear wave equations , 1993 .

[20]  Sergej B. Kuksin,et al.  Nearly Integrable Infinite-Dimensional Hamiltonian Systems , 1993 .

[21]  Vũ Quôc Phóng,et al.  The operator equationAX−XB=C with unbounded operatorsA andB and related abstract Cauchy problems , 1991 .

[22]  C. Eugene Wayne,et al.  Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory , 1990 .

[23]  W. Ziemer Weakly differentiable functions , 1989 .

[24]  Sergei Kuksin,et al.  Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum , 1987 .

[25]  J. Fröhlich,et al.  Absence of diffusion in the Anderson tight binding model for large disorder or low energy , 1983 .

[26]  Haim Brezis,et al.  Periodic solutions of nonlinear vibrating strings and duality principles , 1983 .

[27]  A. M. Samoilenko,et al.  Methods of Accelerated Convergence in Nonlinear Mechanics , 1976 .

[28]  Jurgen Poschel Quasi-periodic solutions for a nonlinear wave equation , 2007 .

[29]  Xiaoping Yuan INVARIANT MANIFOLD OF HYPERBOLIC-ELLIPTIC TYPE FOR NONLINEAR WAVE EQUATION , 2003 .

[30]  S. Kuksin Elements of a qualitative theory of Hamiltonian PDEs , 1998 .

[31]  J. Bourgain On Melnikov’s persistency problem , 1997 .

[32]  J. Pöschel,et al.  Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrodinger equation , 1996 .

[33]  Jean Bourgain,et al.  Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE , 1994 .

[34]  B. Lidskii,et al.  Periodic solutions of the equation utt — uxx + u3 = 0 , 1988 .

[35]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[36]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[37]  Tosio Kato Perturbation theory for linear operators , 1966 .

[38]  Fernando Bertolini,et al.  Le funzioni misurabili di ultrafiltro come elementi di un reticolo lineare numerabilmente completo , 1961 .