Single-hole tunneling through a two-dimensional hole gas in intrinsic silicon

In this letter we report single-hole tunneling through a quantum dot in a two-dimensional hole gas, situated in a narrow-channel field-effect transistor in intrinsic silicon. Two layers of aluminum gate electrodes are defined on Si/SiO2 using electron-beam lithography. Fabrication and subsequent electrical characterization of different devices yield reproducible results, such as typical MOSFET turn-on and pinch-off characteristics. Additionally, linear transport measurements at 4 K result in regularly spaced Coulomb oscillations, corresponding to single-hole tunneling through individual Coulomb islands. These Coulomb peaks are visible over a broad range in gate voltage, indicating very stable device operation. Energy spectroscopy measurements show closed Coulomb diamonds with single-hole charging energies of 5–10 meV and lines of increased conductance as a result of resonant tunneling through additional available hole states.

[1]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[2]  R. S. Ross,et al.  Pauli spin blockade in undoped Si/SiGe two-electron double quantum dots , 2011, 1106.6285.

[3]  A. Dzurak,et al.  Gate-defined quantum dots in intrinsic silicon. , 2007, Nano letters.

[4]  M. Lagally,et al.  Single-electron quantum dot in Si∕SiGe with integrated charge sensing , 2007, 0710.3725.

[5]  L. Vandersypen,et al.  Supporting Online Material for Coherent Control of a Single Electron Spin with Electric Fields Materials and Methods Som Text Figs. S1 and S2 References , 2022 .

[6]  Mark A. Eriksson,et al.  Embracing the quantum limit in silicon computing , 2011, Nature.

[7]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[8]  H. Huebl,et al.  Observation of the single-electron regime in a highly tunable silicon quantum dot , 2009, 0910.0576.

[9]  W. V. D. Wiel,et al.  Electron transport through double quantum dots , 2002, cond-mat/0205350.

[10]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[11]  M. Y. Simmons,et al.  A single atom transistor , 2012, 2012 IEEE Silicon Nanoelectronics Workshop (SNW).

[12]  M. L. W. Thewalt,et al.  Quantum Information Storage for over 180 s Using Donor Spins in a 28Si “Semiconductor Vacuum” , 2012, Science.

[13]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[14]  Andrew S. Dzurak,et al.  High-fidelity readout and control of a nuclear spin qubit in silicon , 2013, Nature.

[15]  S. Tarucha,et al.  Electrically driven single-electron spin resonance in a slanting Zeeman field , 2008, 0805.1083.

[16]  L. P. Kouwenhoven,et al.  Spin–orbit qubit in a semiconductor nanowire , 2010, Nature.

[17]  Pablo Jarillo-Herrero,et al.  Electron-hole symmetry in a semiconducting carbon nanotube quantum dot , 2004, Nature.

[18]  A. Morello,et al.  Resonant tunnelling features in quantum dots , 2010, Nanotechnology.

[19]  Charles M Lieber,et al.  Spin states of the first four holes in a silicon nanowire quantum dot. , 2008, Nano letters.

[20]  Andrew S. Dzurak,et al.  A single-atom electron spin qubit in silicon , 2012, Nature.

[21]  A. Gossard,et al.  Hyperfine-mediated gate-driven electron spin resonance. , 2007, Physical review letters.

[22]  D. Ralph,et al.  Coupling of spin and orbital motion of electrons in carbon nanotubes , 2008, Nature.

[23]  J. Gilman,et al.  Nanotechnology , 2001 .

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  E. Bakkers,et al.  Electrical control of single hole spins in nanowire quantum dots. , 2013, Nature nanotechnology.

[26]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[27]  Insoo Woo,et al.  Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET , 2008 .

[28]  Romain Wacquez,et al.  Few electron limit of n-type metal oxide semiconductor single electron transistors , 2012, Nanotechnology.