HLA-independent T cell receptors for targeting tumors with low antigen density

[1]  R. Bruggmann,et al.  Targeting CD70 with cusatuzumab eliminates acute myeloid leukemia stem cells in patients treated with hypomethylating agents , 2020, Nature Medicine.

[2]  Shondra M. Pruett-Miller,et al.  Route of 41BB/41BBL Costimulation Determines Effector Function of B7-H3-CAR.CD28ζ T Cells , 2020, Molecular therapy oncolytics.

[3]  S. Steinberg,et al.  CD4/CD8 T-Cell Selection Affects Chimeric Antigen Receptor (CAR) T-Cell Potency and Toxicity: Updated Results From a Phase I Anti-CD22 CAR T-Cell Trial. , 2020, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[4]  J. Khan,et al.  Serial evaluation of CD19 surface expression in pediatric B-cell malignancies following CD19-targeted therapy , 2020, Leukemia.

[5]  Christopher E. Mason,et al.  The therapeutic landscape for cells engineered with chimeric antigen receptors , 2020, Nature Biotechnology.

[6]  S. Tu,et al.  Mechanisms of Relapse After CD19 CAR T-Cell Therapy for Acute Lymphoblastic Leukemia and Its Prevention and Treatment Strategies , 2019, Front. Immunol..

[7]  G. Pazour,et al.  Tethering of vesicles to the Golgi by GMAP210 controls LAT delivery to the immune synapse , 2019, Nature Communications.

[8]  T. Fry,et al.  Mechanisms of resistance to CAR T cell therapy , 2019, Nature Reviews Clinical Oncology.

[9]  S. Weiler,et al.  Synthetic TRuC receptors engaging the complete T cell receptor for potent anti-tumor response , 2019, Nature Communications.

[10]  Weiss,et al.  B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. , 2019, The Journal of clinical investigation.

[11]  M. Sadelain,et al.  CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape , 2019, Nature.

[12]  M. Cantorna,et al.  Vitamin D Is Required for ILC3 Derived IL-22 and Protection From Citrobacter rodentium Infection , 2019, Front. Immunol..

[13]  G. Salles,et al.  Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B‐Cell Lymphoma , 2019, The New England journal of medicine.

[14]  M. Sadelain,et al.  Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency , 2018, Nature Medicine.

[15]  C. Mackall,et al.  Tumor Antigen Escape from CAR T-cell Therapy. , 2018, Cancer discovery.

[16]  B. Nelson,et al.  The chimeric TAC receptor co-opts the T cell receptor yielding robust anti-tumor activity without toxicity , 2018, Nature Communications.

[17]  G. Gaud,et al.  Regulatory mechanisms in T cell receptor signalling , 2018, Nature Reviews Immunology.

[18]  Michel Sadelain,et al.  Chimeric Antigen Receptor Therapy. , 2018, The New England journal of medicine.

[19]  Michael L. Wang,et al.  T Cells Genetically Modified to Express an Anti-B-Cell Maturation Antigen Chimeric Antigen Receptor Cause Remissions of Poor-Prognosis Relapsed Multiple Myeloma. , 2018, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[20]  Steven P Gygi,et al.  Streamlined Tandem Mass Tag (SL-TMT) Protocol: An Efficient Strategy for Quantitative (Phospho)proteome Profiling Using Tandem Mass Tag-Synchronous Precursor Selection-MS3. , 2018, Journal of proteome research.

[21]  Mithat Gonen,et al.  Long‐Term Follow‐up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia , 2018, The New England journal of medicine.

[22]  K. Davis,et al.  Tisagenlecleucel in Children and Young Adults with B‐Cell Lymphoblastic Leukemia , 2018, The New England journal of medicine.

[23]  Yang Feng,et al.  CD22-CAR T Cells Induce Remissions in CD19-CAR Naïve and Resistant B-ALL , 2017, Nature Medicine.

[24]  J. Kochenderfer,et al.  Chimeric antigen receptor T-cell therapies for lymphoma , 2018, Nature Reviews Clinical Oncology.

[25]  R. Levy,et al.  Axicabtagene Ciloleucel CAR T‐Cell Therapy in Refractory Large B‐Cell Lymphoma , 2017, The New England journal of medicine.

[26]  Thomas M. Schmitt,et al.  A CD200R-CD28 fusion protein appropriates an inhibitory signal to enhance T-cell function and therapy of murine leukemia. , 2017, Blood.

[27]  C. Brennan,et al.  Integrating Proteomics and Transcriptomics for Systematic Combinatorial Chimeric Antigen Receptor Therapy of AML. , 2017, Cancer cell.

[28]  Michel Sadelain,et al.  Therapeutic T cell engineering , 2017, Nature.

[29]  Mithat Gönen,et al.  Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection , 2017, Nature.

[30]  Daniel Li,et al.  CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. , 2016, The Journal of clinical investigation.

[31]  M. Sadelain,et al.  Structural Design of Engineered Costimulation Determines Tumor Rejection Kinetics and Persistence of CAR T Cells. , 2015, Cancer cell.

[32]  Michel Sadelain,et al.  The pharmacology of second-generation chimeric antigen receptors , 2015, Nature Reviews Drug Discovery.

[33]  Israel Steinfeld,et al.  Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells , 2015, Nature Biotechnology.

[34]  Michel Sadelain,et al.  Genomic safe harbors permit high β-globin transgene expression in thalassemia induced pluripotent stem cells , 2011, Nature Biotechnology.

[35]  Hai Qi,et al.  SLAM receptors and SAP influence lymphocyte interactions, development and function , 2009, Nature Reviews Immunology.

[36]  A. Chakraborty,et al.  T cell sensing of antigen dose governs interactive behavior with dendritic cells and sets a threshold for T cell activation , 2008, Nature Immunology.

[37]  R. Flavell,et al.  A scaffold protein, AHNAK1, is required for calcium signaling during T cell activation. , 2008, Immunity.

[38]  M. Sadelain,et al.  T cell–encoded CD80 and 4-1BBL induce auto- and transcostimulation, resulting in potent tumor rejection , 2007, Nature Medicine.

[39]  Mark M Davis,et al.  T cell killing does not require the formation of a stable mature immunological synapse , 2004, Nature Immunology.

[40]  Z. Eshhar,et al.  The T-body approach: potential for cancer immunotherapy , 2004, Springer Seminars in Immunopathology.

[41]  S. Larson,et al.  Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15 , 2003, Nature Medicine.

[42]  Michel Sadelain,et al.  Targeting tumours with genetically enhanced T lymphocytes , 2003, Nature Reviews Cancer.

[43]  Michel Sadelain,et al.  Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ /CD28 receptor , 2002, Nature Biotechnology.

[44]  H. Grey,et al.  The minimal number of antigen‐major histocompatibility complex class II complexes required for activation of naive and primed T cells , 1997, European journal of immunology.

[45]  R. Mulligan,et al.  Effects of retroviral vector design on expression of human adenosine deaminase in murine bone marrow transplant recipients engrafted with genetically modified cells. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Z. Eshhar,et al.  Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[47]  L. Hood,et al.  DNA sequence of the mouse H-2Dd transplantation antigen gene. , 1985, Proceedings of the National Academy of Sciences of the United States of America.