Damage detection by an adaptive real-parameter simulated annealing genetic algorithm

An effective algorithm, which combined an adaptive real-parameter genetic algorithm with simulated annealing, is proposed to detect damage occurrence in beam-type structures. The proposed algorithm uses the displacements of static response and natural frequencies of modal analysis, which are obtained by finite element software ANSYS. There are three different kinds of beam structures to verify the performance of the proposed algorithm. These three cases have different boundary conditions and different damage scenarios. From the results, it is demonstrated that the proposed algorithm is efficient in flexural stiffness damage identification for beam-type structures under free of noise condition. Even under the case of noise, the results show that the searched solutions are still in reasonable precision.

[1]  Seamus D. Garvey,et al.  A COMBINED GENETIC AND EIGENSENSITIVITY ALGORITHM FOR THE LOCATION OF DAMAGE IN STRUCTURES , 1998 .

[2]  Arun Kumar Pandey,et al.  Damage detection from changes in curvature mode shapes , 1991 .

[3]  David C. Zimmerman,et al.  Eigenstructure assignment approach for structural damage detection , 1992 .

[4]  Z. Yao,et al.  Structural damage identification using static test data and changes in frequencies , 2001 .

[5]  Ju-Jang Lee,et al.  Adaptive simulated annealing genetic algorithm for system identification , 1996 .

[6]  Cecilia Surace,et al.  An application of Genetic Algorithms to identify damage in elastic structures , 1996 .

[7]  Izhak Sheinman,et al.  Damage detection and updating of stiffness and mass matrices using mode data , 1996 .

[8]  Richard G. Cobb,et al.  Structural Damage Identification Using Assigned Partial Eigenstructure , 1997 .

[9]  Yo-Ping Huang,et al.  Real-valued genetic algorithms for fuzzy grey prediction system , 1997, Fuzzy Sets Syst..

[10]  C. Ratcliffe DAMAGE DETECTION USING A MODIFIED LAPLACIAN OPERATOR ON MODE SHAPE DATA , 1997 .

[11]  Tshilidzi Marwala,et al.  Multiple-Criterion Method for Determining Structural Damage , 1998 .

[12]  Norris Stubbs,et al.  Damage identification in beam-type structures: frequency-based method vs mode-shape-based method , 2003 .

[13]  Tae W. Lim,et al.  Structural damage detection using real-time modal parameter identification algorithm , 1996 .

[14]  N. Bićanić,et al.  Assessment of damage in continuum structures based on incomplete modal information , 2000 .

[15]  Rajarshi Das,et al.  A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization , 1989, ICGA.

[16]  Jamshid Ghaboussi,et al.  Genetic algorithm in structural damage detection , 2001 .

[17]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[18]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[19]  H. Du,et al.  Improved Inverse Eigensensitivity Method for Structural Analytical Model Updating , 1995 .

[20]  Di Wu,et al.  Efficient numerical model for the damage detection of large scale structure , 2001 .

[21]  E. Parloo,et al.  Combined damage detection techniques , 2003 .

[22]  K. Grigoriadis,et al.  Damage detection using impulse response , 1997 .

[23]  Nam-Gyu Park,et al.  DAMAGE DETECTION USING SPATIALLY INCOMPLETE FREQUENCY RESPONSE FUNCTIONS , 2003 .

[24]  F. Hemez,et al.  Improved Damage Location Accuracy Using Strain Energy-Based Mode Selection Criteria , 1997 .

[25]  Yuping Wang,et al.  An orthogonal genetic algorithm with quantization for global numerical optimization , 2001, IEEE Trans. Evol. Comput..

[26]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[27]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[28]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[29]  Karolos M. Grigoriadis,et al.  Structural Damage Detection Using Linear Matrix Inequality Methods , 2000 .

[30]  Mohamed Kaouk,et al.  Structural damage assessment using a generalized minimum rank perturbation theory , 1993 .

[31]  J. S. Sirkis,et al.  Damage Detection in Beam Structures Using Subspace Rotation Algorithm with Strain Data , 1996 .

[32]  Ahmet E. Aktan,et al.  Condition assessment and damage identification of a steel-stringer bridge using system-identification methods , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[33]  Rong-Song He,et al.  Improving real-parameter genetic algorithm with simulated annealing for engineering problems , 2006, Adv. Eng. Softw..

[34]  D. C. Zimmerman,et al.  Model correlation using multiple static load and vibration tests , 1995 .

[35]  Guo-Qiang Li,et al.  A flexibility approach for damage identification of cantilever-type structures with bending and shear deformation , 1999 .

[36]  Rong-Song He,et al.  A hybrid real-parameter genetic algorithm for function optimization , 2006, Adv. Eng. Informatics.

[37]  James M. Ricles,et al.  Damage Detection in Structures by Modal Vibration Characterization , 1999 .

[38]  G. D. Jeong,et al.  Identification of Stiffness Reductions Using Natural Frequencies , 1995 .

[39]  Keith D. Hjelmstad,et al.  Damage detection and assessment of structures from static response , 1997 .

[40]  Haim Baruh,et al.  Damage Detection in Flexible Structures , 1993 .

[41]  Cecilia Surace,et al.  DAMAGE ASSESSMENT OF MULTIPLE CRACKED BEAMS: NUMERICAL RESULTS AND EXPERIMENTAL VALIDATION , 1997 .

[42]  Rongming Lin,et al.  Structural damage detection using measured FRF data , 1997 .

[43]  Nuno M. M. Maia,et al.  Damage detection in structures: From mode shape to frequency response function methods , 2003 .

[44]  S. Law,et al.  Structural Damage Detection from Incomplete and Noisy Modal Test Data , 1998 .

[45]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .