BioNimbuZ: A federated cloud platform for bioinformatics applications

Challenges in bioinformatics include tools to treat large-scale processing, mainly due to the large volumes of data generated by high-throughput sequencing machines. Besides, many of these tools are not user friendly, and do not distribute their workloads properly. In federated cloud environments, even though services and resources are shared and available online, the processes of a workflow execution are almost entirely not automated, and the majority of these processes do not efficiently balance their workloads. This paper presents the federated cloud platform, called BioNimbuZ, a hybrid platform designed to execute bioinformatics applications easily and efficiently, with good workload balance. Our tests were performed using a real bioinformatics workflow, with fragments generated by the Illumina sequencer, having achieved good performance in practice.

[1]  Hugo Vasconcelos Saldanha,et al.  BioNimbus : uma arquitetura de federação de nuvens computacionais híbrida para a execução de workflows de Bioinformática , 2013 .

[2]  Robert L. Grossman,et al.  Bionimbus: a cloud for managing, analyzing and sharing large genomics datasets , 2014, J. Am. Medical Informatics Assoc..

[3]  Barreiros Júnior,et al.  Escalonador de Tarefas para o Plataforma de Nuvens Federadas BioNimbuZ Usando Beam Search Iterativo Multiobjetivo , 2016 .

[4]  Michael C. Schatz,et al.  CloudBurst: highly sensitive read mapping with MapReduce , 2009, Bioinform..

[5]  Diego Rodrigues Azevedo,et al.  BioCirrus : uma nova política de armazenamento para a plataforma BioNimbuZ de Nuvem Federada , 2015 .

[6]  V. Curcin,et al.  Scientific workflow systems - can one size fit all? , 2008, 2008 Cairo International Biomedical Engineering Conference.

[7]  M. Stephens,et al.  RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. , 2008, Genome research.

[8]  M. Factor,et al.  Object storage: the future building block for storage systems , 2005, 2005 IEEE International Symposium on Mass Storage Systems and Technology.

[9]  Antonio Puliafito,et al.  Adding long-term availability, obfuscation, and encryption to multi-cloud storage systems , 2016, J. Netw. Comput. Appl..

[10]  Raj Reddy,et al.  The LOCUS Model of Search and its Use in Image Interpretation , 1977, IJCAI.

[11]  Gabriel Silva Souza de Oliveira AcoSched : um escalonador para o ambiente de Nuvem Federada ZooNimbus , 2013 .

[12]  Carole A. Goble,et al.  Taverna: a tool for building and running workflows of services , 2006, Nucleic Acids Res..

[13]  Imran Qureshi,et al.  CPU Scheduling Algorithms: A Survey , 2014 .

[14]  David A. Van Veldhuizen,et al.  Evolutionary Computation and Convergence to a Pareto Front , 1998 .

[15]  Maristela Holanda,et al.  Towards a Hybrid Federated Cloud Platform to Efficiently Execute Bioinformatics Workflows , 2012 .

[16]  David R. Riley,et al.  CloVR: A virtual machine for automated and portable sequence analysis from the desktop using cloud computing , 2011, BMC Bioinformatics.

[17]  Vinícius de Almeida Ramos Um sistema gerenciador de Workflows científicos para a plataforma de nuvens federadas BioNimbuZ , 2016 .

[18]  Matthew L. Ginsberg,et al.  Limited Discrepancy Search , 1995, IJCAI.