On convergent numerical algorithms for unsymmetric collocation

In this paper, we are interested in some convergent formulations for the unsymmetric collocation method or the so-called Kansa’s method. We review some newly developed theories on solvability and convergence. The rates of convergence of these variations of Kansa’s method are examined and verified in arbitrary–precision computations. Numerical examples confirm with the theories that the modified Kansa’s method converges faster than the interpolant to the solution; that is, exponential convergence for the multiquadric and Gaussian radial basis functions (RBFs). Some numerical algorithms are proposed for efficiency and accuracy in practical applications of Kansa’s method. In double–precision, even for very large RBF shape parameters, we show that the modified Kansa’s method, through a subspace selection using a greedy algorithm, can produce acceptable approximate solutions. A benchmark algorithm is used to verify the optimality of the selection process.

[1]  Leevan Ling,et al.  A least-squares preconditioner for radial basis functions collocation methods , 2005, Adv. Comput. Math..

[2]  R. Schaback Recovery of functions from weak data using unsymmetric meshless kernel-based methods , 2008 .

[3]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[4]  Ilse C. F. Ipsen,et al.  The Lack of Influence of the Right-Hand Side on the Accuracy of Linear System Solution , 1998, SIAM J. Sci. Comput..

[5]  W. R. Madych,et al.  Miscellaneous error bounds for multiquadric and related interpolators , 1992 .

[6]  B. Fornberg,et al.  Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions , 2003 .

[7]  Robert Schaback,et al.  On unsymmetric collocation by radial basis functions , 2001, Appl. Math. Comput..

[8]  P. Hansen,et al.  The effective condition number applied to error analysis of certain boundary collocation methods , 1994 .

[9]  G. J. Moridis,et al.  The Laplace Transform Multiquadric Method: A Highly Accurate Scheme for the Numerical Solution of Partial Differential Equations , 1993 .

[10]  P. Fedelinski,et al.  Boundary element method in dynamic analysis of structures with cracks , 2004 .

[11]  Bengt Fornberg,et al.  Scattered node compact finite difference-type formulas generated from radial basis functions , 2006, J. Comput. Phys..

[12]  E. Kansa,et al.  Exponential convergence and H‐c multiquadric collocation method for partial differential equations , 2003 .

[13]  Robert Schaback,et al.  Stable and Convergent Unsymmetric Meshless Collocation Methods , 2008, SIAM J. Numer. Anal..

[14]  Benny Y. C. Hon,et al.  Compactly supported radial basis functions for shallow water equations , 2002, Appl. Math. Comput..

[15]  Hung-Tsai Huang,et al.  Effective condition number and superconvergence of the Trefftz method coupled with high order FEM for singularity problems , 2006 .

[16]  D. L. Young,et al.  Solutions of 2D and 3D Stokes laws using multiquadrics method , 2004 .

[17]  Robert Schaback,et al.  Convergence of Unsymmetric Kernel-Based Meshless Collocation Methods , 2007, SIAM J. Numer. Anal..

[18]  Y. Hon,et al.  A grid-free, nonlinear shallow-water model with moving boundary , 2004 .

[19]  Jukka Saranen,et al.  The conditioning of some numerical methods for first kind boundary integral equations , 1996 .

[20]  C. Brebbia,et al.  Boundary Elements IX , 1987 .

[21]  T. Driscoll,et al.  Interpolation in the limit of increasingly flat radial basis functions , 2002 .

[22]  Gregory E. Fasshauer,et al.  Solving differential equations with radial basis functions: multilevel methods and smoothing , 1999, Adv. Comput. Math..

[23]  R. Schaback,et al.  Results on meshless collocation techniques , 2006 .

[24]  R. Schaback Multivariate Interpolation by Polynomials and Radial Basis Functions , 2005 .

[25]  Robert Schaback,et al.  Unsymmetric meshless methods for operator equations , 2010, Numerische Mathematik.

[26]  C.-S. Chien,et al.  Effective condition number for finite difference method , 2007 .

[27]  A. Cheng,et al.  Radial basis collocation methods for elliptic boundary value problems , 2005 .

[28]  E. J. Kansa,et al.  Multizone decomposition for simulation of time-dependent problems using the multiquadric scheme , 1999 .

[29]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[30]  Thomas C. Cecil,et al.  Numerical methods for high dimensional Hamilton-Jacobi equations using radial basis functions , 2004 .

[31]  Bengt Fornberg Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2002 .

[32]  Shmuel Rippa,et al.  An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..

[33]  T. Lu,et al.  Singularities and treatments of elliptic boundary value problems , 2000 .

[34]  R. Schaback,et al.  On Adaptive Unsymmetric Meshless Collocation , 2004 .

[35]  A. Cheng,et al.  Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method , 2007 .

[36]  T. Chan,et al.  Effectively Well-Conditioned Linear Systems , 1988 .

[37]  Jichun Li,et al.  Mixed methods for fourth-order elliptic and parabolic problems using radial basis functions , 2005, Adv. Comput. Math..

[38]  T. Driscoll,et al.  Observations on the behavior of radial basis function approximations near boundaries , 2002 .

[39]  Robert Schaback,et al.  Solvability of partial differential equations by meshless kernel methods , 2008, Adv. Comput. Math..

[40]  Dietmar Hietel,et al.  A projection technique for incompressible flow in the meshless finite volume particle method , 2005, Adv. Comput. Math..