Inductive logic programming at 30

[1]  Alan Fern,et al.  Scalable and Usable Relational Learning With Automatic Language Bias , 2021, SIGMOD Conference.

[2]  Rolf Morel,et al.  Predicate Invention by Learning From Failures , 2021, ArXiv.

[3]  Stassa Patsantzis,et al.  Top program construction and reduction for polynomial time Meta-Interpretive learning , 2021, Mach. Learn..

[4]  S. Muggleton,et al.  Abductive Knowledge Induction From Raw Data , 2020, IJCAI.

[5]  Ute Schmid,et al.  Beneficial and harmful explanatory machine learning , 2020, Machine Learning.

[6]  Katsumi Inoue,et al.  Learning any semantics for dynamical systems represented by logic programs , 2020 .

[7]  Andrew Cropper,et al.  Inductive logic programming at 30: a new introduction , 2020, J. Artif. Intell. Res..

[8]  Stefan Kramer,et al.  A Brief History of Learning Symbolic Higher-Level Representations from Data (And a Curious Look Forward) , 2020, IJCAI.

[9]  Stephen Muggleton,et al.  Complete Bottom-Up Predicate Invention in Meta-Interpretive Learning , 2020, IJCAI.

[10]  Yong Qi,et al.  Stochastic Batch Augmentation with An Effective Distilled Dynamic Soft Label Regularizer , 2020, IJCAI.

[11]  Rolf Morel,et al.  Learning programs by learning from failures , 2020, Mach. Learn..

[12]  Krysia Broda,et al.  The ILASP system for Inductive Learning of Answer Set Programs , 2020, ArXiv.

[13]  Sebastijan Dumancic,et al.  Knowledge Refactoring for Inductive Program Synthesis , 2020, AAAI.

[14]  Andrew Cropper,et al.  Learning large logic programs by going beyond entailment , 2020, IJCAI.

[15]  Jorge Lobo,et al.  FastLAS: Scalable Inductive Logic Programming Incorporating Domain-Specific Optimisation Criteria , 2020, AAAI.

[16]  S. Muggleton,et al.  Turning 30: New Ideas in Inductive Logic Programming , 2020, IJCAI.

[17]  Andrew Cropper,et al.  Forgetting to learn logic programs , 2019, AAAI.

[18]  José Hernández-Orallo,et al.  Making sense of sensory input , 2019, Artif. Intell..

[19]  Andrew Cropper,et al.  Logical reduction of metarules , 2019, Machine Learning.

[20]  Rolf Morel,et al.  Learning higher-order logic programs , 2019, Machine Learning.

[21]  James Cheney,et al.  Towards meta-interpretive learning of programming language semantics , 2019, ILP.

[22]  Jorge Lobo,et al.  Representing and Learning Grammars in Answer Set Programming , 2019, AAAI.

[23]  Richard Evans,et al.  Inductive general game playing , 2019, Machine Learning.

[24]  Chong Wang,et al.  Neural Logic Machines , 2019, ICLR.

[25]  Andrew Cropper,et al.  Playgol: learning programs through play , 2019, IJCAI.

[26]  S. Muggleton,et al.  Machine Discovery of Comprehensible Strategies for Simple Games Using Meta-interpretive Learning , 2019, New Generation Computing.

[27]  Wannes Meert,et al.  Learning Relational Representations with Auto-encoding Logic Programs , 2019, IJCAI.

[28]  Guy Van den Broeck,et al.  Active Inductive Logic Programming for Code Search , 2018, 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).

[29]  Céline Rouveirol,et al.  The Game of Bridge: A Challenge for ILP , 2018, ILP.

[30]  Krysia Broda,et al.  The complexity and generality of learning answer set programs , 2018, Artif. Intell..

[31]  A. Srinivasan,et al.  Identification of biological transition systems using meta-interpreted logic programs , 2018, Machine Learning.

[32]  S. Muggleton,et al.  Meta-Interpretive Learning from noisy images , 2018, Machine Learning.

[33]  Stephen Muggleton,et al.  Ultra-Strong Machine Learning: comprehensibility of programs learned with ILP , 2018, Machine Learning.

[34]  Katsumi Inoue,et al.  Exploiting Answer Set Programming with External Sources for Meta-Interpretive Learning , 2018, Theory and Practice of Logic Programming.

[35]  Gary Marcus,et al.  Deep Learning: A Critical Appraisal , 2018, ArXiv.

[36]  Richard Evans,et al.  Learning Explanatory Rules from Noisy Data , 2017, J. Artif. Intell. Res..

[37]  Aws Albarghouthi,et al.  Constraint-Based Synthesis of Datalog Programs , 2017, CP.

[38]  P. Schüller,et al.  Best-effort inductive logic programming via fine-grained cost-based hypothesis generation , 2017, Machine Learning.

[39]  Alireza Tamaddoni-Nezhad,et al.  Next-Generation Global Biomonitoring: Large-scale, Automated Reconstruction of Ecological Networks. , 2017, Trends in ecology & evolution.

[40]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[41]  Tim Rocktäschel,et al.  End-to-end Differentiable Proving , 2017, NIPS.

[42]  Alan Fern,et al.  Towards Automatically Setting Language Bias in Relational Learning , 2017, DEEM@SIGMOD.

[43]  Fan Yang,et al.  Differentiable Learning of Logical Rules for Knowledge Base Reasoning , 2017, NIPS.

[44]  Sebastian Nowozin,et al.  DeepCoder: Learning to Write Programs , 2016, ICLR.

[45]  S. Ferilli Predicate invention-based specialization in Inductive Logic Programming , 2016, Journal of Intelligent Information Systems.

[46]  Alexander Artikis,et al.  Online learning of event definitions , 2016, Theory and Practice of Logic Programming.

[47]  Hendrik Blockeel,et al.  Clustering-Based Relational Unsupervised Representation Learning with an Explicit Distributed Representation , 2016, IJCAI.

[48]  Hendrik Blockeel,et al.  Unsupervised Relational Representation Learning via Clustering: Preliminary Results , 2016, ArXiv.

[49]  A. Srinivasan,et al.  ILP-assisted de novo drug design , 2016, Machine Learning.

[50]  Victor W. Marek,et al.  Solving and Verifying the Boolean Pythagorean Triples Problem via Cube-and-Conquer , 2016, SAT.

[51]  C. Torras,et al.  Learning Relational Dynamics of Stochastic Domains for Planning , 2016, ICAPS.

[52]  Luc De Raedt,et al.  Statistical Relational Artificial Intelligence: Logic, Probability, and Computation , 2016, Statistical Relational Artificial Intelligence.

[53]  Chiaki Sakama,et al.  Learning Multi-valued Biological Models with Delayed Influence from Time-Series Observations , 2015, 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA).

[54]  Lukasz Kaiser,et al.  Neural GPUs Learn Algorithms , 2015, ICLR.

[55]  Nando de Freitas,et al.  Neural Programmer-Interpreters , 2015, ICLR.

[56]  Stephen Muggleton,et al.  Meta-Interpretive Learning of Data Transformation Programs , 2015, ILP.

[57]  Luc De Raedt,et al.  Relational Kernel-Based Grasping with Numerical Features , 2015, ILP.

[58]  Andrew Cropper Learning efficient logic programs , 2015, Machine Learning.

[59]  Stephen Muggleton,et al.  Learning Efficient Logical Robot Strategies Involving Composable Objects , 2015, IJCAI.

[60]  Luc De Raedt,et al.  Inducing Probabilistic Relational Rules from Probabilistic Examples , 2015, IJCAI.

[61]  William Yang Wang,et al.  Structure Learning via Parameter Learning , 2014, CIKM.

[62]  Krysia Broda,et al.  Inductive Learning of Answer Set Programs , 2014, JELIA.

[63]  V. S. Costa,et al.  Inductive Logic Programming , 2014, Lecture Notes in Computer Science.

[64]  Katsumi Inoue,et al.  Learning Prime Implicant Conditions from Interpretation Transition , 2014, ILP.

[65]  Stephen Muggleton,et al.  Towards Machine Learning of Predictive Models from Ecological Data , 2014, ILP.

[66]  Stephen Muggleton,et al.  Bias reformulation for one-shot function induction , 2014, ECAI.

[67]  Alexander Artikis,et al.  Incremental learning of event definitions with Inductive Logic Programming , 2014, Machine Learning.

[68]  Fabrizio Riguzzi,et al.  Structure learning of probabilistic logic programs by searching the clause space , 2013, Theory and Practice of Logic Programming.

[69]  Stephen Muggleton,et al.  Meta-interpretive learning of higher-order dyadic datalog: predicate invention revisited , 2013, Machine Learning.

[70]  Michael R. Genesereth,et al.  The International General Game Playing Competition , 2013, AI Mag..

[71]  Katsumi Inoue,et al.  Completing causal networks by meta-level abduction , 2013, Machine Learning.

[72]  Martin Gebser,et al.  Answer Set Solving in Practice , 2012, Answer Set Solving in Practice.

[73]  Martin Gebser,et al.  Conflict-driven answer set solving: From theory to practice , 2012, Artif. Intell..

[74]  A. Tate A measure of intelligence , 2012 .

[75]  Olivier Roussel,et al.  The International SAT Solver Competitions , 2012, AI Mag..

[76]  Stephen Muggleton,et al.  Automated Discovery of Food Webs from Ecological Data Using Logic-Based Machine Learning , 2011, PloS one.

[77]  Peter A. Flach,et al.  ILP turns 20 , 2011, Machine Learning.

[78]  Alessandra Russo,et al.  Inductive Logic Programming in Answer Set Programming , 2011, ILP.

[79]  Sumit Gulwani,et al.  Automating string processing in spreadsheets using input-output examples , 2011, POPL '11.

[80]  Oliver Ray,et al.  Nonmonotonic abductive inductive learning , 2009, J. Appl. Log..

[81]  Stephen Muggleton,et al.  Chess Revision: Acquiring the Rules of Chess Variants through FOL Theory Revision from Examples , 2009, ILP.

[82]  Pedro M. Domingos,et al.  Learning Markov logic network structure via hypergraph lifting , 2009, ICML '09.

[83]  Luc De Raedt,et al.  Logical and relational learning , 2008, Cognitive Technologies.

[84]  Ivan Bratko,et al.  An Experiment in Robot Discovery with ILP , 2008, ILP.

[85]  Raymond J. Mooney,et al.  Discriminative structure and parameter learning for Markov logic networks , 2008, ICML '08.

[86]  Pedro M. Domingos,et al.  Statistical predicate invention , 2007, ICML '07.

[87]  J. Lang,et al.  ProbLog: A Probabilistic Prolog and Its Application in Link Discovery , 2007, IJCAI.

[88]  Matthew Richardson,et al.  Markov logic networks , 2006, Machine Learning.

[89]  Stefano Ferilli,et al.  Automatic Induction of First-Order Logic Descriptors Type Domains from Observations , 2004, ILP.

[90]  Ashwin Srinivasan,et al.  An Empirical Study of the Use of Relevance Information in Inductive Logic Programming , 2003, J. Mach. Learn. Res..

[91]  Yoshitaka Kameya,et al.  Parameter Learning of Logic Programs for Symbolic-Statistical Modeling , 2001, J. Artif. Intell. Res..

[92]  Ivan Bratko,et al.  Refining Complete Hypotheses in ILP , 1999, ILP.

[93]  Hendrik Blockeel,et al.  Top-Down Induction of First Order Logical Decision Trees , 1998, AI Commun..

[94]  Stephen Muggleton,et al.  Inverse entailment and progol , 1995, New Generation Computing.

[95]  Irene Stahl,et al.  The appropriateness of predicate invention as bias shift operation in ILP , 1995, Machine Learning.

[96]  Luc De Raedt,et al.  Inductive Logic Programming: Theory and Methods , 1994, J. Log. Program..

[97]  J. Ross Quinlan,et al.  Learning logical definitions from relations , 1990, Machine Learning.

[98]  Stephen Muggleton,et al.  Machine Invention of First Order Predicates by Inverting Resolution , 1988, ML.

[99]  Stephen Muggleton,et al.  Duce, An Oracle-based Approach to Constructive Induction , 1987, IJCAI.

[100]  Armando Solar-Lezama,et al.  Learning Libraries of Subroutines for Neurally-Guided Bayesian Program Induction , 2018, NeurIPS.

[101]  Katsumi Inoue,et al.  Meta-Level Abduction , 2016, FLAP.

[102]  Claude Sammut,et al.  The Robot Engineer , 2015, ILP.

[103]  Shiu Yin Yuen,et al.  Efficient program synthesis using constraint satisfaction in inductive logic programming , 2013, J. Mach. Learn. Res..

[104]  Chiaki Sakama,et al.  Learning from interpretation transition , 2013, Machine Learning.

[105]  Stephen Muggleton,et al.  Meta-interpretive learning: application to grammatical inference , 2013, Machine Learning.

[106]  Katsumi Inoue,et al.  ILP turns 20 - Biography and future challenges , 2012, Mach. Learn..

[107]  Luc De Raedt,et al.  Probabilistic Inductive Logic Programming - Theory and Applications , 2008, Probabilistic Inductive Logic Programming.

[108]  Shan-Hwei Nienhuys-Cheng,et al.  Foundations of Inductive Logic Programming , 1997, Lecture Notes in Computer Science.

[109]  Eric McCreath,et al.  Extraction of Meta-Knowledge to Restrict the Hypothesis Space for ILP Systems , 1995 .

[110]  Taisuke Sato,et al.  A Statistical Learning Method for Logic Programs with Distribution Semantics , 1995, ICLP.

[111]  Stephen Muggleton,et al.  Efficient Induction of Logic Programs , 1990, ALT.

[112]  Niklaus Wirth,et al.  Algorithms and Data Structures , 1989, Lecture Notes in Computer Science.

[113]  Donald Michie,et al.  Machine Learning in the Next Five Years , 1988, EWSL.

[114]  G. Plotkin Automatic Methods of Inductive Inference , 1972 .