CDnet 2014: An Expanded Change Detection Benchmark Dataset

Change detection is one of the most important lowlevel tasks in video analytics. In 2012, we introduced the changedetection.net (CDnet) benchmark, a video dataset devoted to the evalaution of change and motion detection approaches. Here, we present the latest release of the CDnet dataset, which includes 22 additional videos (70; 000 pixel-wise annotated frames) spanning 5 new categories that incorporate challenges encountered in many surveillance settings. We describe these categories in detail and provide an overview of the results of more than a dozen methods submitted to the IEEE Change DetectionWorkshop 2014. We highlight strengths and weaknesses of these methods and identify remaining issues in change detection.

[1]  Fatih Porikli,et al.  Performance Evaluation of Object Detection and Tracking Systems , 2006 .

[2]  Massimo De Gregorio,et al.  Change Detection with Weightless Neural Networks , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[3]  Ferdinand van der Heijden,et al.  Efficient adaptive density estimation per image pixel for the task of background subtraction , 2006, Pattern Recognit. Lett..

[4]  Mansour Moniri,et al.  Spectral-360: A Physics-Based Technique for Change Detection , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[5]  Sidney S. Fels,et al.  Evaluation of Background Subtraction Algorithms with Post-Processing , 2008, 2008 IEEE Fifth International Conference on Advanced Video and Signal Based Surveillance.

[6]  Guillaume-Alexandre Bilodeau,et al.  Flexible Background Subtraction with Self-Balanced Local Sensitivity , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[7]  Rita Cucchiara,et al.  Video Surveillance Online Repository (ViSOR): an integrated framework , 2010, Multimedia Tools and Applications.

[8]  Thierry Bouwmans,et al.  Background Modeling using Mixture of Gaussians for Foreground Detection - A Survey , 2008 .

[9]  Lucia Maddalena,et al.  The SOBS algorithm: What are the limits? , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[10]  Qi Tian,et al.  Statistical modeling of complex backgrounds for foreground object detection , 2004, IEEE Transactions on Image Processing.

[11]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[12]  Thierry Bouwmans,et al.  Recent Advanced Statistical Background Modeling for Foreground Detection - A Systematic Survey , 2011 .

[13]  Dong Liang,et al.  Improvements and Experiments of a Compact Statistical Background Model , 2014, ArXiv.

[14]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Rui Wang,et al.  Static and Moving Object Detection Using Flux Tensor with Split Gaussian Models , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[16]  Massimo Piccardi,et al.  Background subtraction techniques: a review , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[17]  L. Davis,et al.  Background and foreground modeling using nonparametric kernel density estimation for visual surveillance , 2002, Proc. IEEE.

[18]  Paul L. Rosin,et al.  Evaluation of global image thresholding for change detection , 2003, Pattern Recognit. Lett..

[19]  José María Martínez Sanchez,et al.  A ground truth for motion-based video-object segmentation , 2008, 2008 15th IEEE International Conference on Image Processing.

[20]  Jorge S. Marques,et al.  Performance evaluation of object detection algorithms for video surveillance , 2006, IEEE Transactions on Multimedia.

[21]  Thierry Bouwmans,et al.  Background Modeling and Foreground Detection for Video Surveillance , 2014 .

[22]  Badrinath Roysam,et al.  Image change detection algorithms: a systematic survey , 2005, IEEE Transactions on Image Processing.

[23]  Benjamin Höferlin,et al.  Evaluation of background subtraction techniques for video surveillance , 2011, CVPR 2011.

[24]  Hélène Laurent,et al.  Comparative study of background subtraction algorithms , 2010, J. Electronic Imaging.

[25]  Thierry Chateau,et al.  A Benchmark Dataset for Outdoor Foreground/Background Extraction , 2012, ACCV Workshops.

[26]  Bin Wang,et al.  A Fast Self-Tuning Background Subtraction Algorithm , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[27]  Xiqun Lu,et al.  A multiscale spatio-temporal background model for motion detection , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[28]  Fatih Murat Porikli,et al.  Changedetection.net: A new change detection benchmark dataset , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[29]  J.M. Ferryman,et al.  PETS Metrics: On-Line Performance Evaluation Service , 2005, 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance.

[30]  Thomas Sikora,et al.  Comparison of static background segmentation methods , 2005, Visual Communications and Image Processing.

[31]  Mohan M. Trivedi,et al.  Analysis and detection of shadows in video streams: a comparative evaluation , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.