Analytic network process for pattern classification problems using genetic algorithms

The analytic network process (ANP) is a useful technique for multi-attribute decision analysis (MCDA) that employs a network representation to describe interrelationships between diverse attributes. Owing to effectiveness of the ANP in allowing for complex interrelationships between attributes, this paper develops an ANP-based classifier for pattern classification problems with interdependence or independence among attributes. To deal with interdependence, this study employs genetic algorithms (GAs) to automatically determine elements in the supermatrix that are not easily user-specified, to find degrees of importance of respective attributes. Then, with the relative importance for each attribute in the limiting supermatrix, the current work determines the class label of a pattern by its synthetic evaluation. Experimental results obtained by the proposed ANP-based classifier are comparable to those obtained by other fuzzy or non-fuzzy classification methods.

[1]  Adrien Presley,et al.  R&D project selection using the analytic network process , 2002, IEEE Trans. Engineering Management.

[2]  Andrzej Osyczka,et al.  Evolutionary Algorithms for Single and Multicriteria Design Optimization , 2001 .

[3]  Thomas L. Saaty,et al.  Decision making with dependence and feedback : the analytic network process : the organization and prioritization of complexity , 1996 .

[4]  K. S. Tang,et al.  Genetic Algorithms: Concepts and Designs with Disk , 1999 .

[5]  Sam Kwong,et al.  Genetic Algorithms : Concepts and Designs , 1998 .

[6]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[7]  Chin-Tsai Lin,et al.  Evaluating digital video recorder systems using analytic hierarchy and analytic network processes , 2007, Inf. Sci..

[8]  Mónica García-Melón,et al.  Valuation of urban industrial land: An analytic network process approach , 2008, Eur. J. Oper. Res..

[9]  Christos A. Papachristou,et al.  Learning discrete mappings-Athena's approach , 1988, [Proceedings] 1988 IEEE Workshop on Languages for Automation@m_Symbiotic and Intelligent Robotics.

[10]  Ferenc Szeifert,et al.  Data-driven generation of compact, accurate, and linguistically sound fuzzy classifiers based on a decision-tree initialization , 2003, Int. J. Approx. Reason..

[11]  Lakhmi C. Jain,et al.  Neural Network Training Using Genetic Algorithms , 1996 .

[12]  M. M. Ali,et al.  Integrated crossover rules in real coded genetic algorithms , 2007, Eur. J. Oper. Res..

[13]  Constantin Zopounidis,et al.  Multicriteria Decision Aid Classification Methods , 2002 .

[14]  Manoj Kumar Tiwari,et al.  Analyzing alternatives in reverse logistics for end-of-life computers: ANP and balanced scorecard approach , 2005, Comput. Ind. Eng..

[15]  Metin Dagdeviren,et al.  Using the analytic network process (ANP) in a SWOT analysis - A case study for a textile firm , 2007, Inf. Sci..

[16]  K. E. Hindi,et al.  Training Radial Basis Function Networks Using Reduced Sets as Center Points , 2022 .

[17]  Joseph Sarkis,et al.  Analyzing organizational project alternatives for agile manufacturing processes: An analytical network approach , 1999 .

[18]  T. L. Saaty A Scaling Method for Priorities in Hierarchical Structures , 1977 .

[19]  Daijin Kim,et al.  A Handwritten Numeral Character Classification Using Tolerant Rough Set , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  T. Saaty Fundamentals of Decision Making and Priority Theory With the Analytic Hierarchy Process , 2000 .

[21]  Umut Rifat Tuzkaya,et al.  A fuzzy analytic network process based approach to transportation-mode selection between Turkey and Germany: A case study , 2008, Inf. Sci..

[22]  Jian Li,et al.  Reducing the Overfitting of Adaboost by Controlling its Data Distribution Skewness , 2006, Int. J. Pattern Recognit. Artif. Intell..

[23]  Hisao Ishibuchi,et al.  Hybridization of fuzzy GBML approaches for pattern classification problems , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[24]  Evangelos Triantaphyllou,et al.  Multi-criteria Decision Making Methods: A Comparative Study , 2000 .

[25]  H. Vacik,et al.  Application of the analytic network process in multi-criteria analysis of sustainable forest management , 2005 .

[26]  J. Ross Quinlan,et al.  Simplifying Decision Trees , 1987, Int. J. Man Mach. Stud..

[27]  T. Saaty,et al.  The Analytic Hierarchy Process , 1985 .

[28]  Soung Hie Kim,et al.  Using analytic network process and goal programming for interdependent information system project selection , 2000, Comput. Oper. Res..

[29]  Casimir A. Kulikowski,et al.  Computer Systems That Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning and Expert Systems , 1990 .

[30]  George J. Klir,et al.  Genetic algorithms for determining fuzzy measures from data , 1998, J. Intell. Fuzzy Syst..

[31]  Edward I. Altman,et al.  FINANCIAL RATIOS, DISCRIMINANT ANALYSIS AND THE PREDICTION OF CORPORATE BANKRUPTCY , 1968 .

[32]  Thomas L. Saaty,et al.  An Analytic Network Process Model for Financial-Crisis Forecasting , 2004 .

[33]  Patrick Siarry,et al.  A genetic algorithm for optimizing Takagi-Sugeno fuzzy rule bases , 1998, Fuzzy Sets Syst..

[34]  Hisao Ishibuchi,et al.  Three-objective genetics-based machine learning for linguistic rule extraction , 2001, Inf. Sci..

[35]  Wen Lea Pearn,et al.  Analytic network process (ANP) approach for product mix planning in semiconductor fabricator , 2005 .