Aligned, Ultralong Single‐Walled Carbon Nanotubes: From Synthesis, Sorting, to Electronic Devices

Aligned, ultralong single-walled carbon nanotubes (SWNTs) represent attractive building blocks for nanoelectronics. The structural uniformity along their tube axis and well-ordered two-dimensional architectures on wafer surfaces may provide a straightforward platform for fabricating high-performance SWNT-based integrated circuits. On the way towards future nanoelectronic devices, many challenges for such a specific system also exist. This Review summarizes the recent advances in the synthesis, identification and sorting, transfer printing and manipulation, device fabrication and integration of aligned, ultralong SWNTs in detail together with discussion on their major challenges and opportunities for their practical application.

[1]  Charles M Lieber,et al.  Fundamental electronic properties and applications of single-walled carbon nanotubes. , 2002, Accounts of chemical research.

[2]  Sheng Wang,et al.  Fabrication of high performance top-gate complementary inverter using a single carbon nanotube and via a simple process , 2007 .

[3]  Eric Pop,et al.  ELECTRICAL TRANSPORT PROPERTIES AND FIELD EFFECT TRANSISTORS OF CARBON NANOTUBES , 2006 .

[4]  Mark C. Hersam,et al.  Sorting carbon nanotubes by electronic structure using density differentiation , 2006, Nature nanotechnology.

[5]  John A Rogers,et al.  Radio frequency analog electronics based on carbon nanotube transistors , 2008, Proceedings of the National Academy of Sciences.

[6]  Hongjie Dai,et al.  Carbon nanotubes: synthesis, integration, and properties. , 2002, Accounts of chemical research.

[7]  A. Ismach,et al.  Carbon nanotube graphoepitaxy: highly oriented growth by faceted nanosteps. , 2005, Journal of the American Chemical Society.

[8]  Stanislaus S. Wong,et al.  Covalent Surface Chemistry of Single‐Walled Carbon Nanotubes , 2005 .

[9]  James Hone,et al.  Cobalt ultrathin film catalyzed ethanol chemical vapor deposition of single-walled carbon nanotubes. , 2006, The journal of physical chemistry. B.

[10]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[11]  H. Son,et al.  Raman spectral probing of electronic transition energy Eii variation of individual SWNTs under torsional strain. , 2007, Nano letters.

[12]  Cees Dekker,et al.  Individual single-walled carbon nanotubes as nanoelectrodes for electrochemistry. , 2005, Nano letters.

[13]  Zhongfan Liu,et al.  Sorting out Semiconducting Single-Walled Carbon Nanotube Arrays by Preferential Destruction of Metallic Tubes Using Xenon-Lamp Irradiation , 2008 .

[14]  S. Akita,et al.  Visualization of Horizontally-Aligned Single-Walled Carbon Nanotube Growth with 13C/12C Isotopes , 2008 .

[15]  A Javey,et al.  Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. , 2001, Journal of the American Chemical Society.

[16]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[17]  Cherie R. Kagan,et al.  Chemically assisted directed assembly of carbon nanotubes for the fabrication of large-scale device arrays. , 2007, Journal of the American Chemical Society.

[18]  George G Malliaras,et al.  Suppression of Metallic Conductivity of Single-Walled Carbon Nanotubes by Cycloaddition Reactions , 2009, Science.

[19]  P. Ajayan,et al.  Metal--semiconductor transition in single-walled carbon nanotubes induced by low-energy electron irradiation. , 2005, Nano letters.

[20]  Limin Huang,et al.  Long and oriented single-walled carbon nanotubes grown by ethanol chemical vapor deposition , 2004 .

[21]  M. Itkis,et al.  Covalent Bond Formation to a Carbon Nanotube Metal , 2003, Science.

[22]  John A Rogers,et al.  Molecular scale buckling mechanics in individual aligned single-wall carbon nanotubes on elastomeric substrates. , 2008, Nano letters.

[23]  Qian Wang,et al.  Carbon Nanotube Transistor Arrays for Multistage Complementary Logic and Ring Oscillators , 2002, Nano Letters.

[24]  J. Rogers,et al.  Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. , 2005, Small.

[25]  P. McEuen,et al.  Electron-Phonon Scattering in Metallic Single-Walled Carbon Nanotubes , 2003, cond-mat/0309641.

[26]  Lei An,et al.  Growth of aligned SWNT arrays from water-soluble molecular clusters for nanotube device fabrication , 2004 .

[27]  Wanlin Guo,et al.  Electric-field-enhanced assembly of single-walled carbon nanotubes on a solid surface. , 2005, The journal of physical chemistry. B.

[28]  Growth of serpentine carbon nanotubes on quartz substrates and their electrical properties , 2008 .

[29]  R. Krupke,et al.  Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes , 2003, Science.

[30]  A. Hirsch,et al.  Preferred functionalization of metallic and small-diameter single walled carbon nanotubesvia reductive alkylation , 2008 .

[31]  John A. Rogers,et al.  Solution Casting and Transfer Printing Single-Walled Carbon Nanotube Films , 2004 .

[32]  Houjin Huang,et al.  Preferential destruction of metallic single-walled carbon nanotubes by laser irradiation. , 2006, The journal of physical chemistry. B.

[33]  Lianmao Peng,et al.  A Doping‐Free Carbon Nanotube CMOS Inverter‐Based Bipolar Diode and Ambipolar Transistor , 2008 .

[34]  Donald W. Brenner,et al.  Mechanical and Electrical Properties of Nanotubes , 2002 .

[35]  Charles M. Lieber,et al.  Structural ( n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. , 2001, Physical review letters.

[36]  P. Avouris,et al.  Carbon Nanotube Inter- and Intramolecular Logic Gates , 2001 .

[37]  Ant Ural,et al.  Electric-field-aligned growth of single-walled carbon nanotubes on surfaces , 2002 .

[38]  P. Avouris,et al.  Carbon-based electronics. , 2007, Nature nanotechnology.

[39]  Seong Chu Lim,et al.  Selective removal of metallic single-walled carbon nanotubes with small diameters by using nitric and sulfuric acids. , 2005, The journal of physical chemistry. B.

[40]  A. Ismach,et al.  Self-organized nanotube serpentines. , 2008, Nature nanotechnology.

[41]  Mark S. Lundstrom,et al.  High-κ dielectrics for advanced carbon-nanotube transistors and logic gates , 2002 .

[42]  John A. Rogers,et al.  Three-Dimensional and Multilayer Nanostructures Formed by Nanotransfer Printing , 2003 .

[43]  R. Smalley,et al.  Growth Mechanism of Oriented Long Single Walled Carbon Nanotubes Using "Fast-Heating" Chemical Vapor Deposition Process , 2004 .

[44]  J. U. Lee,et al.  Carbon nanotube p-n junction diodes , 2004 .

[45]  A. Benayad,et al.  Selective oxidation on metallic carbon nanotubes by halogen oxoanions. , 2008, Journal of the American Chemical Society.

[46]  John A. Rogers,et al.  Extreme bendability of single-walled carbon nanotube networks transferred from high-temperature growth substrates to plastic and their use in thin-film transistors , 2005 .

[47]  Hongjie Dai,et al.  Carbon nanotubes: opportunities and challenges , 2002 .

[48]  Li Zhang,et al.  Langmuir-blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. , 2007, Journal of the American Chemical Society.

[49]  M. Dresselhaus,et al.  Structure-Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly , 2003, Science.

[50]  K. Balasubramanian,et al.  A Selective Electrochemical Approach to Carbon Nanotube Field-Effect Transistors , 2004 .

[51]  Wei Zhou,et al.  An electrical switch based on Ag-tetracyanoquinodimethane sandwiched by crossed carbon nanotube electrodes , 2008 .

[52]  Jie Liu,et al.  Selective growth of well-aligned semiconducting single-walled carbon nanotubes. , 2009, Nano letters.

[53]  Yutaka Ohno,et al.  n-type carbon nanotube field-effect transistors fabricated by using Ca contact electrodes , 2005 .

[54]  Yagang Yao,et al.  "Cloning" of single-walled carbon nanotubes via open-end growth mechanism. , 2009, Nano letters.

[55]  James Hone,et al.  Scaling of resistance and electron mean free path of single-walled carbon nanotubes. , 2007, Physical review letters.

[56]  Q. X. Jia,et al.  Ultralong single-wall carbon nanotubes , 2004, Nature materials.

[57]  Richard Martel,et al.  Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes , 2002 .

[58]  Zhongfan Liu,et al.  Electrochemical identification of metallic and semiconducting single-walled carbon nanotubes using the water gate effect. , 2009, Chemical communications.

[59]  Zhongfan Liu,et al.  Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing. , 2008, Journal of the American Chemical Society.

[60]  James Hone,et al.  Controlled placement of individual carbon nanotubes. , 2005, Nano letters.

[61]  X. Liang,et al.  Direct Growth of Single-Walled Carbon Nanotubes without Metallic Residues by Using Lead as a Catalyst , 2008 .

[62]  Kwang S. Kim,et al.  Quasi-continuous growth of ultralong carbon nanotube arrays. , 2005, Journal of the American Chemical Society.

[63]  H. Dai,et al.  Selective Etching of Metallic Carbon Nanotubes by Gas-Phase Reaction , 2006, Science.

[64]  Zhongfan Liu,et al.  Fabrication of Carbon Nanotube Diode with Atomic Force Microscopy Manipulation , 2008 .

[65]  M. Lundstrom,et al.  Self-Aligned Ballistic Molecular Transistors and Electrically Parallel Nanotube Arrays , 2004, cond-mat/0406494.

[66]  Shin-Shem Pei,et al.  Mechanism of horizontally aligned growth of single-wall carbon nanotubes on R-plane sapphire. , 2006, The journal of physical chemistry. B.

[67]  Zhong Jin,et al.  Ultralow feeding gas flow guiding growth of large-scale horizontally aligned single-walled carbon nanotube arrays. , 2007, Nano letters.

[68]  P. Avouris,et al.  Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown , 2001, Science.

[69]  Zhongfan Liu,et al.  Raman Spectral Measuring of the Growth Rate of Individual Single-Walled Carbon Nanotubes , 2007 .

[70]  J. M. Kim,et al.  Grow Single-Walled Carbon Nanotubes Cross-Bar in One Batch , 2009 .

[71]  S. O’Brien,et al.  Imaging and Raman Spectroscopy of Individual Single-Wall Carbon Nanotubes on a Large Substrate , 2007 .

[72]  Yukinori Ochiai,et al.  Horizontally directional single-wall carbon nanotubes grown by chemical vapor deposition with a local electric field , 2007 .

[73]  Phaedon Avouris,et al.  Deformation of carbon nanotubes by surface van der Waals forces , 1998 .

[74]  Y. Hanein,et al.  A complete scheme for creating predefined networks of individual carbon nanotubes. , 2007, Nano letters.

[75]  M. Dresselhaus,et al.  Quantitative evaluation of the octadecylamine-assisted bulk separation of semiconducting and metallic single-wall carbon nanotubes by resonance Raman spectroscopy , 2004 .

[76]  Zhongfan Liu,et al.  Chemically assembled single-wall carbon nanotubes and their electrochemistry. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[77]  Zhongfan Liu,et al.  Selective positioning and integration of individual single-walled carbon nanotubes. , 2009, Nano letters.

[78]  Yoshio Nishi,et al.  DNA functionalization of carbon nanotubes for ultrathin atomic layer deposition of high kappa dielectrics for nanotube transistors with 60 mV/decade switching. , 2006, Journal of the American Chemical Society.

[79]  Pengfei Qi,et al.  Hydrogenation and hydrocarbonation and etching of single-walled carbon nanotubes. , 2006, Journal of the American Chemical Society.

[80]  John A. Rogers,et al.  Inorganic Semiconductors for Flexible Electronics , 2007 .

[81]  Subhasish Mitra,et al.  CMOS-analogous wafer-scale nanotube-on-insulator approach for submicrometer devices and integrated circuits using aligned nanotubes. , 2009, Nano letters.

[82]  H. Son,et al.  Resonant Raman spectroscopy of individual strained single-wall carbon nanotubes. , 2007, Nano letters.

[83]  Klaus Kern,et al.  Carbon nanotube memory devices of high charge storage stability , 2002 .

[84]  R. Smalley,et al.  Electronic Structure Control of Single-Walled Carbon Nanotube Functionalization , 2003, Science.

[85]  Yan Li,et al.  Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage. , 2008, Nano letters.

[86]  Zhongfan Liu,et al.  Photoluminescence recovery from single-walled carbon nanotubes on substrates. , 2007, Journal of the American Chemical Society.

[87]  Stanislaus S. Wong,et al.  Selective metallic tube reactivity in the solution-phase osmylation of single-walled carbon nanotubes. , 2004, Journal of the American Chemical Society.

[88]  John A Rogers,et al.  Printed multilayer superstructures of aligned single-walled carbon nanotubes for electronic applications. , 2007, Nano letters.

[89]  H. Dai,et al.  Preferential Growth of Semiconducting Single-Walled Carbon Nanotubes by a Plasma Enhanced CVD Method , 2004 .

[90]  Fang Chen,et al.  Controllable interconnection of single-walled carbon nanotubes under ac electric field. , 2005, The journal of physical chemistry. B.

[91]  Yong Qian,et al.  Metal-catalyst-free growth of single-walled carbon nanotubes on substrates. , 2009, Journal of the American Chemical Society.

[92]  John A. Rogers,et al.  Improved Synthesis of Aligned Arrays of Single-Walled Carbon Nanotubes and Their Implementation in Thin Film Type Transistors† , 2007 .

[93]  John A Rogers,et al.  Heterogeneous Three-Dimensional Electronics by Use of Printed Semiconductor Nanomaterials , 2006, Science.

[94]  Young Hee Lee,et al.  Preferential etching of metallic single-walled carbon nanotubes with small diameter by fluorine gas , 2006 .

[95]  Zhongfan Liu,et al.  Manipulation of Ultralong Single-Walled Carbon Nanotubes at Macroscale , 2008 .

[96]  A. Rinzler,et al.  An Integrated Logic Circuit Assembled on a Single Carbon Nanotube , 2006, Science.

[97]  Jae-Young Choi,et al.  Direct growth of semiconducting single-walled carbon nanotube array. , 2009, Journal of the American Chemical Society.

[98]  John A. Rogers,et al.  Electrical Contacts to Molecular Layers by Nanotransfer Printing , 2003 .

[99]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[100]  George C Schatz,et al.  Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[101]  Chongwu Zhou,et al.  Carbon nanotube field-effect inverters , 2001 .

[102]  Paul L. McEuen,et al.  High Performance Electrolyte Gated Carbon Nanotube Transistors , 2002 .

[103]  Kong,et al.  Intrinsic electrical properties of individual single-walled carbon nanotubes with small band gaps , 2000, Physical review letters.

[104]  A. Reina,et al.  In-situ sample rotation as a tool to understand chemical vapor deposition growth of long aligned carbon nanotubes. , 2008, Nano letters.

[105]  Jing Kong,et al.  Electric-field-directed growth of aligned single-walled carbon nanotubes , 2001 .

[106]  W. Hoenlein,et al.  High-current nanotube transistors , 2004 .

[107]  Yan Li,et al.  Doping-Free Fabrication of Carbon Nanotube Based Ballistic CMOS Devices and Circuits , 2007 .

[108]  Michael S. Fuhrer,et al.  High-Mobility Nanotube Transistor Memory , 2002 .

[109]  W. L. Wang,et al.  Direct synthesis of B-C-N single-walled nanotubes by bias-assisted hot filament chemical vapor deposition. , 2006, Journal of the American Chemical Society.

[110]  Nicolas Izard,et al.  Separation of semiconducting from metallic carbon nanotubes by selective functionalization with azomethine ylides. , 2006, Journal of the American Chemical Society.

[111]  Zhongfan Liu,et al.  Tuning the Diameter of Single-Walled Carbon Nanotubes by Temperature-Mediated Chemical Vapor Deposition , 2009 .

[112]  Zhennan Gu,et al.  Organizing Single-Walled Carbon Nanotubes on Gold Using a Wet Chemical Self-Assembling Technique , 2000 .

[113]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[114]  Charles M. Lieber,et al.  Vectorial Growth of Metallic and Semiconducting Single-Wall Carbon Nanotubes , 2002 .

[115]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[116]  J. Rogers,et al.  High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. , 2007, Nature nanotechnology.

[117]  Benjamin W. Maynor,et al.  Ultralong, Well‐Aligned Single‐Walled Carbon Nanotube Architectureson Surfaces , 2003 .

[118]  John A. Rogers,et al.  p-Channel, n-Channel Thin Film Transistors and p−n Diodes Based on Single Wall Carbon Nanotube Networks , 2004 .

[119]  John A Rogers,et al.  High-frequency performance of submicrometer transistors that use aligned arrays of single-walled carbon nanotubes. , 2009, Nano letters.

[120]  S. Takagi,et al.  On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration , 1994 .

[121]  M. Itkis,et al.  Sidewall functionalization of single-walled carbon nanotubes by addition of dichlorocarbene. , 2003, Journal of the American Chemical Society.

[122]  Ran Liu,et al.  Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions. , 2007, Nature materials.

[123]  Nanobarrier-terminated growth of single-walled carbon nanotubes on quartz surfaces , 2009 .

[124]  Y. Kwak,et al.  Preferential elimination of metallic single-walled carbon nanotubes using microwave irradiation , 2009, Nanotechnology.

[125]  Chunhua Yan,et al.  Copper catalyzing growth of single-walled carbon nanotubes on substrates. , 2006, Nano letters.

[126]  Chongwu Zhou,et al.  Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire. , 2005, Journal of the American Chemical Society.

[127]  J. Kong,et al.  Electrochemistry at single-walled carbon nanotubes: the role of band structure and quantum capacitance. , 2006, Journal of the American Chemical Society.

[128]  E. Campbell,et al.  Electric field aligned growth of single-walled carbon nanotubes ☆ , 2004 .

[129]  Yiming Li,et al.  Synthesis of Ultralong and High Percentage of Semiconducting Single-walled Carbon Nanotubes , 2002 .

[130]  Zhen Yu,et al.  Electrical Properties of 0.4 cm Long Single-Walled Carbon Nanotubes , 2004, cond-mat/0408332.

[131]  J. Knoch,et al.  High performance of potassium n-doped carbon nanotube field-effect transistors , 2004, cond-mat/0402350.

[132]  Jie Liu,et al.  Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. , 2008, Journal of the American Chemical Society.

[133]  J. U. Lee,et al.  Photovoltaic effect in ideal carbon nanotube diodes , 2005 .

[134]  George M. Whitesides,et al.  FORMATION OF PATTERNED MICROSTRUCTURES OF CONDUCTING POLYMERS BY SOFT LITHOGRAPHY, AND APPLICATIONS IN MICROELECTRONIC DEVICE FABRICATION , 1999 .

[135]  A. Reina,et al.  Growth Mechanism of Long and Horizontally Aligned Carbon Nanotubes by Chemical Vapor Deposition , 2007 .

[136]  Zhongfan Liu,et al.  Crinkling Ultralong Carbon Nanotubes into Serpentines by a Controlled Landing Process , 2009 .

[137]  Yong Qian,et al.  Identification of the structures of superlong oriented single-walled carbon nanotube arrays by electrodeposition of metal and Raman spectroscopy. , 2008, Journal of the American Chemical Society.

[138]  Cees Dekker,et al.  Manipulation and Imaging of Individual Single‐Walled Carbon Nanotubes with an Atomic Force Microscope , 2000 .

[139]  Jing Kong,et al.  Substrate-induced Raman frequency variation for single-walled carbon nanotubes. , 2005, Journal of the American Chemical Society.

[140]  Yiyu Feng,et al.  Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. , 2008, Nano letters.

[141]  W. Choi,et al.  Controlled growth and electrical characterization of bent single-walled carbon nanotubes , 2008, Nanotechnology.

[142]  Zhongfan Liu,et al.  Two distinct buckling modes in carbon nanotube bending. , 2007, Nano letters.

[143]  Zhongfan Liu,et al.  Nano-welding by scanning probe microscope. , 2005, Journal of the American Chemical Society.

[144]  K. Jiang,et al.  Transition of single-walled carbon nanotubes from metallic to semiconducting in field-effect transistors by hydrogen plasma treatment. , 2007, Nano letters.

[145]  Riichiro Saito,et al.  Raman spectroscopy of carbon nanotubes , 2005 .

[146]  Jie Liu,et al.  Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. , 2003, Journal of the American Chemical Society.

[147]  Jie Liu,et al.  Raman spectroscopy and imaging of ultralong carbon nanotubes. , 2005, The journal of physical chemistry. B.

[148]  P. Umek,et al.  Selective etching of metallic single-wall carbon nanotubes with hydrogen plasma , 2005, Nanotechnology.

[149]  M. Lee,et al.  Linker-free directed assembly of high-performance integrated devices based on nanotubes and nanowires , 2006, Nature nanotechnology.

[150]  Yasumitsu Miyata,et al.  Selective oxidation of semiconducting single-wall carbon nanotubes by hydrogen peroxide. , 2006, The journal of physical chemistry. B.

[151]  Jie Liu,et al.  Oriented Long Single Walled Carbon Nanotubes on Substrates from Floating Catalysts , 2003 .

[152]  Lei An,et al.  A simple chemical route to selectively eliminate metallic carbon nanotubes in nanotube network devices. , 2004, Journal of the American Chemical Society.

[153]  M. Fuhrer,et al.  Extraordinary Mobility in Semiconducting Carbon Nanotubes , 2004 .

[154]  Zhongfan Liu,et al.  Electrochemical Identification of Metallic and Semiconducting Single-Walled Carbon Nanotubes , 2008 .