Efficient DLPNO-CCSD(T)-Based Estimation of Formation Enthalpies for C-, H-, O-, and N-Containing Closed-Shell Compounds Validated Against Critically Evaluated Experimental Data.

An accurate and cost-efficient methodology for the estimation of the enthalpies of formation for closed-shell compounds composed of C, H, O, and N atoms is presented and validated against critically evaluated experimental data. The computational efficiency is achieved through the use of the resolution-of-identity (RI) and domain-based local pair-natural orbital coupled cluster (DLPNO-CCSD(T)) approximations, which results in a drastic reduction in both the computational cost and the number of necessary steps for a composite quantum chemical method. The expanded uncertainty for the proposed methodology evaluated using a data set of 45 thoroughly vetted experimental values for molecules containing up to 12 heavy atoms is about 3 kJ·mol-1, competitive with those of typical calorimetric measurements. For the compounds within the stated scope, the methodology is shown to be superior to a representative, more general, and widely used composite quantum chemical method, G4.

[1]  Enthalpies of formation of nitromethane and nitrobenzene: New experiments vs. quantum chemical calculations , 2014 .

[2]  S. Verevkin,et al.  Measurement and Prediction of Thermochemical Properties: Improved Increments for the Estimation of Enthalpies of Sublimation and Standard Enthalpies of Formation of Alkyl Derivatives of Urea , 2006 .

[3]  G. S. Parks,et al.  The Heat of Combustion of Biphenyl , 1951 .

[4]  Frank Neese,et al.  The ORCA program system , 2012 .

[5]  Ernst Morawetz,et al.  Enthalpies of vaporization for a number of aromatic compounds , 1972 .

[6]  N. Cohen,et al.  Revised Group Additivity Values for Enthalpies of Formation (at 298 K) of Carbon–Hydrogen and Carbon–Hydrogen–Oxygen Compounds , 1996 .

[7]  L. Curtiss,et al.  Gaussian-3 (G3) theory for molecules containing first and second-row atoms , 1998 .

[8]  G. J. Kabo,et al.  The effect of the failure of isotropy of a gas in an effusion cell on the vapor pressure and enthalpy of sublimation for alkyl derivatives of carbamide , 2003 .

[9]  D. R. Douslin,et al.  Vapor pressure relations of 13 nitrogen compounds related to petroleum , 1968 .

[10]  B. Ruscic,et al.  W4 theory for computational thermochemistry: In pursuit of confident sub-kJ/mol predictions. , 2006, The Journal of chemical physics.

[11]  Krishnan Raghavachari,et al.  Gaussian-2 theory for molecular energies of first- and second-row compounds , 1991 .

[12]  KusanoKazuhito,et al.  Enthalpy of Vaporization of Some Organic Substances at 25.0°C and Test of Calorimeter , 1971 .

[13]  R. Sabbah,et al.  Thermodynamique de substances azotees. IX. Etude thermochimique de la benzamide. Comparaison des grandeurs energetiques liees a la structure de quelques amides et thioamides , 1982 .

[14]  W. V. Steele,et al.  Thermodynamic Properties and Ideal-Gas Enthalpies of Formation for Cyclohexene, Phthalan (2,5-Dihydrobenzo-3,4-furan), Isoxazole, Octylamine, Dioctylamine, Trioctylamine, Phenyl Isocyanate, and 1,4,5,6-Tetrahydropyrimidine , 1996 .

[15]  Ruifeng Liu,et al.  Density Functional Theory (DFT) Study of Enthalpy of Formation. 1. Consistency of DFT Energies and Atom Equivalents for Converting DFT Energies into Enthalpies of Formation , 1996 .

[16]  Manoj K. Kesharwani,et al.  Exploring the Accuracy Limits of Local Pair Natural Orbital Coupled-Cluster Theory. , 2015, Journal of chemical theory and computation.

[17]  H. M. Huffman Thermal Data. XII. The Heats of Combustion of Urea and Guanidine Carbonate and their Standard Free Energies of Formation , 1940 .

[18]  John A. Montgomery,et al.  A complete basis set model chemistry. V. Extensions to six or more heavy atoms , 1996 .

[19]  A. Karton A computational chemist's guide to accurate thermochemistry for organic molecules , 2016 .

[20]  G. A. Petersson,et al.  A complete basis set model chemistry. I. The total energies of closed‐shell atoms and hydrides of the first‐row elements , 1988 .

[21]  D. Bakowies Ab initio thermochemistry with high-level isodesmic corrections: validation of the ATOMIC protocol for a large set of compounds with first-row atoms (H, C, N, O, F). , 2009, The journal of physical chemistry. A.

[22]  W. D. Good,et al.  Enthalpies of combustion of toluene, benzene, cyclohexane, cyclohexene, methylcyclopentane, 1-methylcyclopentene, and n-hexane , 1969 .

[23]  D. Bakowies Ab initio thermochemistry using optimal-balance models with isodesmic corrections: the ATOMIC protocol. , 2009, The Journal of chemical physics.

[24]  Martin W. Feyereisen,et al.  Use of approximate integrals in ab initio theory. An application in MP2 energy calculations , 1993 .

[25]  J. Simmie,et al.  Benchmarking Compound Methods (CBS-QB3, CBS-APNO, G3, G4, W1BD) against the Active Thermochemical Tables: A Litmus Test for Cost-Effective Molecular Formation Enthalpies. , 2015, The journal of physical chemistry. A.

[26]  Juana Vázquez,et al.  HEAT: High accuracy extrapolated ab initio thermochemistry. , 2004, The Journal of chemical physics.

[27]  L. Radom,et al.  An evaluation of harmonic vibrational frequency scale factors. , 2007, The journal of physical chemistry. A.

[28]  A. Karton How large are post-CCSD(T) contributions to the total atomization energies of medium-sized alkanes? , 2016 .

[29]  Mihaly Kallay,et al.  W3 theory: robust computational thermochemistry in the kJ/mol accuracy range. , 2003, Journal of Chemical Physics.

[30]  J. Martin,et al.  Vapour pressures of phenol and the cresols , 1958 .

[31]  Jan M. L. Martin,et al.  TOWARDS STANDARD METHODS FOR BENCHMARK QUALITY AB INITIO THERMOCHEMISTRY :W1 AND W2 THEORY , 1999, physics/9904038.

[32]  M. Temprado,et al.  Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons , 2008 .

[33]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[34]  M. Månsson,et al.  The Heat of Formation of Sulphuric Acid. , 1963 .

[35]  Frank Neese,et al.  Sparse maps--A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory. , 2016, The Journal of chemical physics.

[36]  D. Harrop,et al.  1009. Thermodynamic properties of organic oxygen compounds. Part I. Preparation and physical properties of pure phenol, cresols, and xylenols , 1960 .

[37]  R. D. Chirico,et al.  The thermodynamic properties of biphenyl , 1989 .

[38]  Michael J. S. Dewar,et al.  Development and use of quantum molecular models. 75. Comparative tests of theoretical procedures for studying chemical reactions , 1985 .

[39]  L. S. Kassel,et al.  Determination of Equilibrium Constants for Butanes and Pentanes , 1945 .

[40]  F. Rossini,et al.  Enthalpies of combustion, vaporization, and formation of phenylbenzene, cyclohexylbenzene, and cyclohexylcyclohexane; enthalpy of hydrogenation of certain aromatic systems , 1978 .

[41]  C. Van Alsenoy,et al.  Ab initio calculations on large molecules: The multiplicative integral approximation , 1988 .

[42]  S. Verevkin,et al.  Nearest-Neighbor and Non-Nearest-Neighbor Interactions between Substituents in the Benzene Ring. Experimental and Theoretical Study of Functionally Substituted Benzamides. , 2016, The journal of physical chemistry. A.

[43]  C. E. Wood,et al.  Effect of 4-substitution on the thermodynamics of hydration of phenol and the phenoxide anion , 1971 .

[44]  G. Somsen,et al.  The use of the LKB 8721-3 Vaporization calorimeter to measure enthalpies of sublimation The enthalpies of sublimation of bicyclo[2.2.1]hept-2-ene (norbornene), bicyclo[2.2.1]heptane (norbornane), and tricyclo[3.3.1.13,7]decane (adamantane) , 1982 .

[45]  G. A. Petersson,et al.  A complete basis set model chemistry. VI. Use of density functional geometries and frequencies , 1999 .

[46]  Luís M. N. B. F. Santos,et al.  Energetics of 6-methoxyquinoline and 6-methoxyquinoline N-oxide: the dissociation enthalpy of the (N–O) bond , 2003 .

[47]  S. Rayne,et al.  Estimated Gas-Phase Standard State Enthalpies of Formation for Organic Compounds Using the Gaussian-4 (G4) and W1BD Theoretical Methods , 2010 .

[48]  E. Balson Studies in vapour pressure measurement, Part II.—A new all-glass manometer sensitive to 0.001 mm , 1947 .

[49]  Krishnan Raghavachari,et al.  Gaussian‐1 theory of molecular energies for second‐row compounds , 1990 .

[50]  Juana Vázquez,et al.  High-accuracy extrapolated ab initio thermochemistry. II. Minor improvements to the protocol and a vital simplification. , 2006, The Journal of chemical physics.

[51]  G. Pilcher,et al.  Heats of combustion of biphenyl, bibenzyl, naphthalene, anthracene and phenanthrene , 1966 .

[52]  L. Curtiss,et al.  Gaussian-4 theory. , 2007, The Journal of chemical physics.

[53]  W. D. Good,et al.  Condensed-phase heat-capacity studies and derived thermodynamic properties for six cyclic nitrogen compounds☆☆☆★ , 1988 .

[54]  John A. Montgomery,et al.  A complete basis set model chemistry. VII. Use of the minimum population localization method , 2000 .

[55]  M. R. D. Silva,et al.  Enthalpies of combustion of 1-hydroxynaphthalene, 2-hydroxynaphthalene, and 1,2-, 1,3-, 1,4-, and 2,3-dihydroxynaphthalenes , 1988 .

[56]  Robert D. Chirico,et al.  ThermoData Engine (TDE): Software Implementation of the Dynamic Data Evaluation Concept. 4. Chemical Reactions , 2009, J. Chem. Inf. Model..

[57]  W. D. Good Enthalpies of combustion of nine organic nitrogen compounds related to petroleum , 1972 .

[58]  G. B. Kistiakowsky,et al.  Heats of Organic Reactions. VIII. Some Further Hydrogenations, Including Those of Some Acetylenes , 1939 .

[59]  R. S. Bradley,et al.  349. The vapour pressure and lattice energy of some aromatic ring compounds , 1953 .

[60]  Timothy Clark,et al.  Heats of sublimation of some cage hydrocarbons by a temperature scanning technique , 1975 .

[61]  Use of G4 Theory for the Assessment of Inaccuracies in Experimental Enthalpies of Formation of Aliphatic Nitro Compounds and Nitramines , 2014 .

[62]  O. N. Ryzhova,et al.  Enthalpy of Formation and O-H Bond Dissociation Enthalpy of Phenol: Inconsistency between Theory and Experiment. , 2016, The journal of physical chemistry. A.

[63]  John M Simmie,et al.  A Database of Formation Enthalpies of Nitrogen Species by Compound Methods (CBS-QB3, CBS-APNO, G3, G4). , 2015, The journal of physical chemistry. A.

[64]  G. Pilcher,et al.  Measurements of heats of combustion by flame calorimetry. Part 8.—Methane, ethane, propane, n-butane and 2-methylpropane , 1972 .

[65]  P. O'hare,et al.  A high-precision aneroid semi-micro combustion calorimeter , 1963 .

[66]  Frank Neese,et al.  An efficient and near linear scaling pair natural orbital based local coupled cluster method. , 2013, The Journal of chemical physics.

[67]  D. G. Archer,et al.  Enthalpies of vaporization of piperidine and 1,2-dimethylbenzene; gas-phase isobaric heat capacities of piperidine , 1988 .

[68]  F. Rossini,et al.  HEATS OF COMBUSTION, FORMATION, AND HYDROGENATION OF 14 SELECTED CYCLOMONOÖLEFIN HYDROCARBONS1 , 1961 .

[69]  W. V. Steele,et al.  Thermodynamic Properties and Ideal-Gas Enthalpies of Formation for Butyl Vinyl Ether, 1,2-Dimethoxyethane, Methyl Glycolate, Bicyclo[2.2.1]hept-2-ene, 5-Vinylbicyclo[2.2.1]hept-2-ene, trans-Azobenzene, Butyl Acrylate, Di-tert-butyl Ether, and Hexane-1,6-diol , 1996 .

[70]  Yoav Benjamini,et al.  Opening the Box of a Boxplot , 1988 .

[71]  W. V. Steele,et al.  Vapor Pressure, Heat Capacity, and Density along the Saturation Line: Measurements for Benzenamine, Butylbenzene, sec-Butylbenzene, tert-Butylbenzene, 2,2-Dimethylbutanoic Acid, Tridecafluoroheptanoic Acid, 2-Butyl-2-ethyl-1,3-propanediol, 2,2,4-Trimethyl-1,3-pentanediol, and 1-Chloro-2-propanol , 2002 .

[72]  D. Harrop,et al.  Thermodynamic properties of organic oxygen compounds 41. Enthalpies of formation of eight ethers , 1975 .

[73]  D. Dixon,et al.  Chemical accuracy in ab initio thermochemistry and spectroscopy: current strategies and future challenges , 2012, Theoretical Chemistry Accounts.

[74]  E. Prosen,et al.  Heats of combustion, formation, and insomerization of ten C4 hydrocarbons , 1951 .

[75]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[76]  G. S. Parks,et al.  Heats of Combustion and Formation of Some Alcohols, Phenols, and Ketones , 1954 .

[77]  F. Weigend,et al.  RI-MP2: first derivatives and global consistency , 1997 .

[78]  M. Colomina,et al.  Thermochemical properties of naphthalene compounds II. Enthalpies of combustion and formation of the 1- and 2-naphthols , 1974 .

[79]  H. Diogo,et al.  Enthalpy of formation of anisole: implications for the controversy on the O-H bond dissociation enthalpy in phenol. , 2014, The journal of physical chemistry. A.

[80]  J. Holmes,et al.  Group additivity values for estimating the enthalpy of formation of organic compounds: an update and reappraisal. 1. C, H, and O. , 2011, The journal of physical chemistry. A.

[81]  W. H. Johnson The Enthalpies of Combustion and Formation of Acetanilide and Urea. , 1975, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[82]  D. J. Ruxton,et al.  Thermodynamic properties of organic oxygen compounds. Part 18.—Vapour heat capacities and heats of vaporization of ethyl ketone, ethyl propyl ketone, methyl isopropy1 ketone, and methyl phenyl ether , 1967 .

[83]  Julian Tirado-Rives,et al.  Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules. , 2008, Journal of chemical theory and computation.

[84]  Manoj K. Kesharwani,et al.  Frequency and zero-point vibrational energy scale factors for double-hybrid density functionals (and other selected methods): can anharmonic force fields be avoided? , 2015, The journal of physical chemistry. A.

[85]  W. V. Steele,et al.  Thermodynamic properties of 1-naphthol: Mutual validation of experimental and computational results , 2012 .

[86]  Dimitrios G Liakos,et al.  Is It Possible To Obtain Coupled Cluster Quality Energies at near Density Functional Theory Cost? Domain-Based Local Pair Natural Orbital Coupled Cluster vs Modern Density Functional Theory. , 2015, Journal of chemical theory and computation.

[87]  Frank Neese,et al.  Natural triple excitations in local coupled cluster calculations with pair natural orbitals. , 2013, The Journal of chemical physics.

[88]  M. J. Monte,et al.  Thermodynamic Study of Benzamide, N-Methylbenzamide, and N,N-Dimethylbenzamide: Vapor Pressures, Phase Diagrams, and Hydrogen Bond Enthalpy , 2010 .

[89]  C. M. Anderson,et al.  The Apparent Energy of the N—N Bond as Calculated from Heats of Combustion1 , 1942 .

[90]  E. C. Gilbert,et al.  The Heats of Combustion of Some Nitrogen Compounds and the Apparent Energy of the N-N Bond1a,b , 1951 .