Bicircular matroids are 3-colorable

Hugo Hadwiger proved that a graph that is not 3-colorable must have a K 4 -minor and conjectured that a graph that is not k -colorable must have a K k + 1 -minor. By using the Hochstattler-Nesetřil definition for the chromatic number of an oriented matroid, we formulate a generalized version of Hadwiger's conjecture that might hold for the class of oriented matroids. In particular, it is possible that every oriented matroid with no M ( K 4 ) -minor is 3-colorable.The fact that K 4 -minor-free graphs are characterized as series-parallel networks leads to an easy proof that they are all 3-colorable. We show how to extend this argument to a particular subclass of M ( K 4 ) -minor-free oriented matroids. Specifically we generalize the notion of being series-parallel to oriented matroids, and then show that generalized series-parallel oriented matroids are 3-colorable. To illustrate the method, we show that every orientation of a bicircular matroid is 3-colorable.

[1]  Petr Hlinený,et al.  Balanced Signings and the Chromatic Number of Oriented Matroids , 2006, Combinatorics, Probability and Computing.

[2]  Luis A. Goddyn,et al.  NOWHERE-ZERO FLOWS IN REGULAR MATROIDS AND HADWIGER ’ S CONJECTURE , 2014 .

[3]  D. West Introduction to Graph Theory , 1995 .

[4]  B. Sturmfels Oriented Matroids , 1993 .

[5]  Michal Lason,et al.  Indicated coloring of matroids , 2013, Discret. Appl. Math..

[6]  David K. Arrowsmith,et al.  On the enumeration of chains in regular chain-groups , 1982, J. Comb. Theory, Ser. B.

[7]  J. M. S. Simões Pereira,et al.  On subgraphs as matroid cells , 1972 .

[8]  Robin Thomas,et al.  The Four-Colour Theorem , 1997, J. Comb. Theory, Ser. B.

[9]  K. Appel,et al.  Every Planar Map Is Four Colorable , 2019, Mathematical Solitaires & Games.

[10]  W. T. Tutte On the algebraic theory of graph colorings , 1966 .

[11]  M. Aigner Combinatorial Order Theory , 1979 .

[12]  Jim Lawrence,et al.  Oriented matroids , 1978, J. Comb. Theory B.

[13]  Jaroslav Nesetril,et al.  Antisymmetric flows in matroids , 2006, Eur. J. Comb..

[14]  James G. Oxley,et al.  Matroid theory , 1992 .

[15]  Béla Bollobás,et al.  Hadwiger's Conjecture is True for Almost Every Graph , 1980, Eur. J. Comb..

[16]  Winfried Hochstättler,et al.  Balancing Covectors , 2011, SIAM J. Discret. Math..

[17]  K. Wagner Über eine Eigenschaft der ebenen Komplexe , 1937 .

[18]  Winfried Hochstättler,et al.  On the chromatic number of an oriented matroid , 2008, J. Comb. Theory, Ser. B.

[19]  James G. Oxley,et al.  A characterization of the ternary matroids with no M(K4)-minor , 1987, J. Comb. Theory, Ser. B.

[20]  W. T. Tutte,et al.  A Contribution to the Theory of Chromatic Polynomials , 1954, Canadian Journal of Mathematics.

[21]  Winfried Hochstättler,et al.  The flow lattice of oriented matroids , 2007, Contributions Discret. Math..

[22]  Robin Thomas,et al.  Hadwiger's conjecture forK6-free graphs , 1993, Comb..

[23]  Cun-Quan Zhang,et al.  On (k, d)-colorings and fractional nowhere-zero flows , 1998, J. Graph Theory.