Counterexamples to Bilinear Estimates Related with the KDV Equation and the Nonlinear Schrödinger Equation

[1]  T. Sideris,et al.  Local regularity of nonlinear wave equations in three space dimensions , 1993 .

[2]  Luis Vega,et al.  A bilinear estimate with applications to the KdV equation , 1996 .

[3]  J. Bourgain,et al.  Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations , 1993 .

[4]  J. Bourgain,et al.  On wellposedness of the Zakharov system , 1996 .

[5]  Luis Vega,et al.  The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices , 1993 .

[6]  J. Ginibre,et al.  On the Cauchy Problem for the Zakharov System , 1997 .

[7]  S. Klainerman,et al.  Smoothing estimates for null forms and applications , 1995 .

[8]  M. Reed,et al.  Nonlinear microlocal analysis of semilinear hyperbolic systems in one space dimension , 1982 .

[9]  H. Takaoka,et al.  On the local regularity of the Kadomtsev-Petviashvili-II equation , 2001 .

[10]  M. Machedon,et al.  Estimates for null forms and the spaces H { s ,δ} , 1996 .

[11]  Robert S. Strichartz,et al.  Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations , 1977 .

[12]  Hans Lindblad A sharp counterexample to the local existence of low-regularity solutions to nonlinear wave equations , 1993 .

[13]  Nickolay Tzvetkov On the cauchy problem for kadomtsev-petviashvili equation , 1999 .

[14]  Gustavo Ponce,et al.  Interaction Equations for Short and Long Dispersive Waves , 1998 .

[15]  T. Ozawa,et al.  ON THE COUPLED SYSTEM OF NONLINEAR WAVE EQUATIONS WITH DIFFERENT PROPAGATION SPEEDS , 2000 .

[16]  Hans Lindblad Counterexamples to local existence for semi-linear wave equations , 1996 .

[17]  Luis Vega,et al.  Quadratic forms for the 1-D semilinear Schrödinger equation , 1996 .

[18]  Yi Zhou Local existence with minimal regularity for nonlinear wave equations , 1997 .

[19]  Sergiu Klainerman,et al.  Space-time estimates for null forms and the local existence theorem , 1993 .

[20]  Terence Tao,et al.  Local and global well-posedness of wave maps on $\R^{1+1}$ for rough data , 1998 .

[21]  Tohru Ozawa,et al.  Well-posedness in energy space for the Cauchy problem of the Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions , 1999 .

[22]  D. Tataru Local and global results for wave maps I , 1998 .