PDA (Prolonged Depolarizing Afterpotential) - Defective Mutants: The Story of nina's and ina's—pinta and santa maria, Too

Abstract: Our objective is to present a comprehensive view of the PDA (prolonged depolarizing afterpotential)-defective Drosophila mutants, nina's and ina's, from the discussion of the PDA and the PDA-based mutant screening strategy to summaries of the knowledge gained through the studies of mutants generated using the strategy. The PDA is a component of the light-evoked photoreceptor potential that is generated when a substantial fraction of rhodopsin is photoconverted to its active form, metarhodopsin. The PDA-based mutant screening strategy was adopted to enhance the efficiency and efficacy of ERG (electroretinogram)-based screening for identifying phototransduction-defective mutants. Using this strategy, two classes of PDA-defective mutants were identified and isolated, nina and ina, each comprising multiple complementation groups. The nina mutants are characterized by allele-dependent reduction in the major rhodopsin, Rh1, whereas the ina mutants display defects in some aspects of functions related to the transduction channel, TRP (transient receptor potential). The signaling proteins that have been identified and elucidated through the studies of nina mutants include the Drosophila opsin protein (NINAE), the chaperone protein for nascent opsin (NINAA), and the multifunctional protein, NINAC, required in multiple steps of the Drosophila phototransduction cascade. Also identified by the nina mutants are some of the key enzymes involved in the biogenesis of the rhodopsin chromophore. As for the ina mutants, they led to the discovery of the scaffold protein, INAD, responsible for the nucleation of the supramolecular signaling complex. Also identified by the ina mutants is one of the key members of the signaling complex, INAC (ePKC), and two other proteins that are likely to be important, though their roles in the signaling cascade have not yet been fully elucidated. In most of these cases, the protein identified is the first member of its class to be so recognized.

[1]  Roger C. Hardie,et al.  The INAD Scaffold Is a Dynamic, Redox-Regulated Modulator of Signaling in the Drosophila Eye , 2011, Cell.

[2]  A. Chess,et al.  Function of Rhodopsin in Temperature Discrimination in Drosophila , 2011, Science.

[3]  R. Hardie A brief history of trp: commentary and personal perspective , 2011, Pflügers Archiv - European Journal of Physiology.

[4]  C. Montell,et al.  Dependence on a Retinophilin/Myosin Complex for Stability of PKC and INAD and Termination of Phototransduction , 2010, The Journal of Neuroscience.

[5]  W. Pak Why Drosophila to Study Phototransduction? , 2010, Journal of neurogenetics.

[6]  Marten Postma,et al.  Activation of TRP Channels by Protons and Phosphoinositide Depletion in Drosophila Photoreceptors , 2010, Current Biology.

[7]  Claude Desplan,et al.  Binary fate decisions in differentiating neurons , 2010, Current Opinion in Neurobiology.

[8]  M. Maguire,et al.  NinaB Is Essential for Drosophila Vision but Induces Retinal Degeneration in Opsin-deficient Photoreceptors* , 2009, The Journal of Biological Chemistry.

[9]  J. Bacigalupo,et al.  Unitary recordings of TRP and TRPL channels from isolated Drosophila retinal photoreceptor rhabdomeres: activation by light and lipids. , 2009, Journal of neurophysiology.

[10]  J. von Lintig,et al.  NinaB combines carotenoid oxygenase and retinoid isomerase activity in a single polypeptide , 2008, Proceedings of the National Academy of Sciences.

[11]  Marten Postma,et al.  Ca2+-Dependent Metarhodopsin Inactivation Mediated by Calmodulin and NINAC Myosin III , 2008, Neuron.

[12]  C. Montell,et al.  Control of thermotactic behavior via coupling of a TRP channel to a phospholipase C signaling cascade , 2008, Nature Neuroscience.

[13]  R. Doerge,et al.  DAG Lipase Activity Is Necessary for TRP Channel Regulation in Drosophila Photoreceptors , 2008, Neuron.

[14]  Yuzhong Cheng,et al.  Drosophila TRP channels require a protein with a distinctive motif encoded by the inaF locus , 2007, Proceedings of the National Academy of Sciences.

[15]  Rama Ranganathan,et al.  Dynamic Scaffolding in a G Protein-Coupled Signaling System , 2007, Cell.

[16]  C. Desplan,et al.  Generating patterned arrays of photoreceptors. , 2007, Current opinion in genetics & development.

[17]  A. Patapoutian,et al.  From chills to chilis: mechanisms for thermosensation and chemesthesis via thermoTRPs , 2007, Current Opinion in Neurobiology.

[18]  C. Montell,et al.  Phototransduction and retinal degeneration in Drosophila , 2007, Pflügers Archiv - European Journal of Physiology.

[19]  C. Montell,et al.  Dissection of the pathway required for generation of vitamin A and for Drosophila phototransduction , 2007, The Journal of cell biology.

[20]  Guangyu Wu,et al.  Regulation of G protein-coupled receptor export trafficking. , 2007, Biochimica et biophysica acta.

[21]  M. Ikebe,et al.  Human Myosin III Is a Motor Having an Extremely High Affinity for Actin* , 2006, Journal of Biological Chemistry.

[22]  J. von Lintig,et al.  The Drosophila class B scavenger receptor NinaD-I is a cell surface receptor mediating carotenoid transport for visual chromophore synthesis. , 2006, Biochemistry.

[23]  A. Ham,et al.  Scaffolding Protein INAD Regulates Deactivation of Vision by Promoting Phosphorylation of Transient Receptor Potential by Eye Protein Kinase C in Drosophila , 2006, The Journal of Neuroscience.

[24]  S. Frechter,et al.  Subcellular translocation of the eGFP-tagged TRPL channel in Drosophila photoreceptors requires activation of the phototransduction cascade , 2006, Journal of Cell Science.

[25]  J. O'Tousa,et al.  The Role of Drosophila ninaG Oxidoreductase in Visual Pigment Chromophore Biogenesis* , 2006, Journal of Biological Chemistry.

[26]  David B. Williams Beyond lectins: the calnexin/calreticulin chaperone system of the endoplasmic reticulum , 2006, Journal of Cell Science.

[27]  R. Hardie,et al.  Calnexin Is Essential for Rhodopsin Maturation, Ca2+ Regulation, and Photoreceptor Cell Survival , 2006, Neuron.

[28]  D. Ready,et al.  Arrestin1 Mediates Light-Dependent Rhodopsin Endocytosis and Cell Survival , 2005, Current Biology.

[29]  G. Travis,et al.  Rpe65 Is the Retinoid Isomerase in Bovine Retinal Pigment Epithelium , 2005, Cell.

[30]  C. Montell,et al.  Rhodopsin Formation in Drosophila Is Dependent on the PINTA Retinoid-Binding Protein , 2005, The Journal of Neuroscience.

[31]  S. Sarfare,et al.  The Drosophila ninaG Oxidoreductase Acts in Visual Pigment Chromophore Production* , 2005, Journal of Biological Chemistry.

[32]  F. Diao,et al.  Light-dependent subcellular translocation of Gqα in Drosophila photoreceptors is facilitated by the photoreceptor-specific myosin III NINAC , 2004, Journal of Cell Science.

[33]  I. Braakman,et al.  Protein folding and quality control in the endoplasmic reticulum. , 2004, Current opinion in cell biology.

[34]  T. Zars,et al.  Novel Dominant Rhodopsin Mutation Triggers Two Mechanisms of Retinal Degeneration and Photoreceptor Desensitization , 2004, The Journal of Neuroscience.

[35]  Patrick Delmas,et al.  Functional organization of PLC signaling microdomains in neurons , 2004, Trends in Neurosciences.

[36]  Craig Montell,et al.  Light Adaptation through Phosphoinositide-Regulated Translocation of Drosophila Visual Arrestin , 2003, Neuron.

[37]  M. Ikebe,et al.  Determination of Human Myosin III as a Motor Protein Having a Protein Kinase Activity* , 2003, Journal of Biological Chemistry.

[38]  B. Burnside,et al.  Myo3A, one of two class III myosin genes expressed in vertebrate retina, is localized to the calycal processes of rod and cone photoreceptors and is expressed in the sacculus. , 2003, Molecular biology of the cell.

[39]  M. Kosloff,et al.  Regulation of light‐dependent Gqα translocation and morphological changes in fly photoreceptors , 2003, The EMBO journal.

[40]  Lisan L. Parker,et al.  Protein kinase C (PKC) isoforms in Drosophila. , 2002, Journal of biochemistry.

[41]  J. von Lintig,et al.  A class B scavenger receptor mediates the cellular uptake of carotenoids in Drosophila , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[42]  T. Walsh,et al.  From flies' eyes to our ears: Mutations in a human class III myosin cause progressive nonsyndromic hearing loss DFNB30 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[43]  S. Frechter,et al.  Light-Regulated Subcellular Translocation of Drosophila TRPL Channels Induces Long-Term Adaptation and Modifies the Light-Induced Current , 2002, Neuron.

[44]  Zhou Qy,et al.  Accessory proteins in the biogenesis of G protein-coupled receptors. , 2001 .

[45]  M. Estacion,et al.  Regulation of Drosophila TRPL Channels by Immunophilin FKBP59* , 2001, The Journal of Biological Chemistry.

[46]  A. Huber Scaffolding proteins organize multimolecular protein complexes for sensory signal transduction , 2001, The European journal of neuroscience.

[47]  R. Payne,et al.  Immunocytochemical localization of opsin, visual arrestin, myosin III, and calmodulin in Limulus lateral eye retinular cells and ventral photoreceptors , 2001, The Journal of comparative neurology.

[48]  J. Berg,et al.  A millennial myosin census. , 2001, Molecular biology of the cell.

[49]  R. Hardie,et al.  Calcium Influx via TRP Channels Is Required to Maintain PIP2 Levels in Drosophila Photoreceptors , 2001, Neuron.

[50]  C. Zuker,et al.  Independent Anchoring and Assembly Mechanisms of INAD Signaling Complexes in Drosophila Photoreceptors , 2001, The Journal of Neuroscience.

[51]  P. Dolph,et al.  The Formation of Stable Rhodopsin-Arrestin Complexes Induces Apoptosis and Photoreceptor Cell Degeneration , 2000, Neuron.

[52]  Rama Ranganathan,et al.  A Molecular Pathway for Light-Dependent Photoreceptor Apoptosis in Drosophila , 2000, Neuron.

[53]  C. Montell,et al.  TRP and the PDZ Protein, Inad, Form the Core Complex Required for Retention of the Signalplex in Drosophila Photoreceptor Cells , 2000, The Journal of cell biology.

[54]  B. Burnside,et al.  Cloning and chromosomal localization of a human class III myosin. , 2000, Genomics.

[55]  R. Hardie,et al.  Normal Phototransduction in Drosophila Photoreceptors Lacking an InsP3 Receptor Gene , 2000, Molecular and Cellular Neuroscience.

[56]  B. Wadzinski,et al.  Reversible Phosphorylation of the Signal Transduction Complex in Drosophila Photoreceptors* , 2000, The Journal of Biological Chemistry.

[57]  J. von Lintig,et al.  Filling the Gap in Vitamin A Research , 2000, The Journal of Biological Chemistry.

[58]  R. Hardie,et al.  Constitutive Activity of the Light-Sensitive Channels TRP and TRPL in the Drosophila Diacylglycerol Kinase Mutant, rdgA , 2000, Neuron.

[59]  R. Hardie,et al.  Single photon responses in Drosophila photoreceptors and their regulation by Ca2+ , 2000, The Journal of physiology.

[60]  Armin Huber,et al.  Blue- and Green-Absorbing Visual Pigments ofDrosophila: Ectopic Expression and Physiological Characterization of the R8 Photoreceptor Cell-Specific Rh5 and Rh6 Rhodopsins , 1999, The Journal of Neuroscience.

[61]  W. Pak,et al.  INAF, a protein required for transient receptor potential Ca(2+) channel function. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Craig Montell,et al.  Termination of phototransduction requires binding of the NINAC myosin III and the PDZ protein INAD , 1999, Nature Neuroscience.

[63]  A. Huber,et al.  Patterning of the R7 and R8 photoreceptor cells of Drosophila: evidence for induced and default cell-fate specification. , 1999, Development.

[64]  R. Stephenson,et al.  Identification and distribution of dietary precursors of the Drosophila visual pigment chromophore: analysis of carotenoids in wild type and ninaD mutants by HPLC , 1999, Vision Research.

[65]  Roger C. Hardie,et al.  Polyunsaturated fatty acids activate the Drosophila light-sensitive channels TRP and TRPL , 1999, Nature.

[66]  C. Montell,et al.  Requirement for the NINAC Kinase/Myosin for Stable Termination of the Visual Cascade , 1998, The Journal of Neuroscience.

[67]  C. Montell,et al.  Coordination of an Array of Signaling Proteins through Homo- and Heteromeric Interactions Between PDZ Domains and Target Proteins , 1998, The Journal of cell biology.

[68]  Cornelia I Bargmann,et al.  Odorant Receptor Localization to Olfactory Cilia Is Mediated by ODR-4, a Novel Membrane-Associated Protein , 1998, Cell.

[69]  W. Stark,et al.  Two distantly positioned PDZ domains mediate multivalent INAD–phospholipase C interactions essential for G protein‐coupled signaling , 1998, The EMBO journal.

[70]  P. Kurada,et al.  Rhodopsin maturation antagonized by dominant rhodopsin mutants , 1998, Visual Neuroscience.

[71]  A. Huber,et al.  The TRP Ca2+ channel assembled in a signaling complex by the PDZ domain protein INAD is phosphorylated through the interaction with protein kinase C (ePKC) , 1998, FEBS letters.

[72]  J. K. Lee,et al.  Association of INAD with NORPA is essential for controlled activation and deactivation of Drosophila phototransduction in vivo. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[73]  C. Zuker,et al.  Calmodulin Regulation of Drosophila Light-Activated Channels and Receptor Function Mediates Termination of the Light Response In Vivo , 1997, Cell.

[74]  Emiko Suzuki,et al.  A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade , 1997, Nature.

[75]  J. Acharya,et al.  InsP3 Receptor Is Essential for Growth and Differentiation but Not for Vision in Drosophila , 1997, Neuron.

[76]  D. Papatsenko,et al.  A new rhodopsin in R8 photoreceptors of Drosophila: evidence for coordinate expression with Rh3 in R7 cells. , 1997, Development.

[77]  A. Gobert,et al.  The transient receptor potential protein (Trp), a putative store‐operated Ca2+ channel essential for phosphoinositide‐mediated photoreception, forms a signaling complex with NorpA, InaC and InaD. , 1996, The EMBO journal.

[78]  L. Chadwell,et al.  Identification of a Novel Drosophila Opsin Reveals Specific Patterning of the R7 and R8 Photoreceptor Cells , 1996, Neuron.

[79]  R. Hardie,et al.  Differential effects of ninaC proteins (p132 and p174) on light-activated currents and pupil mechanism in Drosophila photoreceptors , 1996, Visual Neuroscience.

[80]  B. Shieh,et al.  Regulation of the TRP Ca2+ Channel by INAD in Drosophila Photoreceptors , 1996, Neuron.

[81]  W. Pak,et al.  Molecular, Biochemical, and Electrophysiological Characterization of Drosophila norpA Mutants (*) , 1996, The Journal of Biological Chemistry.

[82]  Helen H. Hobbs,et al.  Identification of Scavenger Receptor SR-BI as a High Density Lipoprotein Receptor , 1996, Science.

[83]  J. Kumar,et al.  Rhodopsin plays an essential structural role in Drosophila photoreceptor development. , 1995, Development.

[84]  W. Pak,et al.  Retina-specifically Expressed Novel Subtypes of Bovine Cyclophilin (*) , 1995, The Journal of Biological Chemistry.

[85]  C. Montell,et al.  Calmodulin binding to Drosophila NinaC required for termination of phototransduction. , 1995, The EMBO journal.

[86]  Tatsuya Seki,et al.  A giant nucleopore protein that binds Ran/TC4 , 1995, Nature.

[87]  G. Blobel,et al.  Nup358, a Cytoplasmically Exposed Nucleoporin with Peptide Repeats, Ran-GTP Binding Sites, Zinc Fingers, a Cyclophilin A Homologous Domain, and a Leucine-rich Region (*) , 1995, The Journal of Biological Chemistry.

[88]  T. Dryja,et al.  Retinitis pigmentosa and allied diseases. Implications of genetic heterogeneity. , 1995, Investigative ophthalmology & visual science.

[89]  C. Zuker,et al.  Defective intracellular transport is the molecular basis of rhodopsin-dependent dominant retinal degeneration. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[90]  P. Kurada,et al.  Retinal degeneration caused by dominant rhodopsin mutations in Drosophila , 1995, Neuron.

[91]  K. Isono,et al.  Flies in the group Cyclorrhapha use (3S)-3-hydroxyretinal as a unique visual pigment chromophore. , 1994, European journal of biochemistry.

[92]  M. Adamian,et al.  Rhodopsin accumulation at abnormal sites in retinas of mice with a human P23H rhodopsin transgene. , 1994, Investigative ophthalmology & visual science.

[93]  C. Zuker,et al.  The cyclophilin homolog NinaA functions as a chaperone, forming a stable complex in vivo with its protein target rhodopsin. , 1994, The EMBO journal.

[94]  D. Baylor,et al.  A rhodopsin gene mutation responsible for autosomal dominant retinitis pigmentosa results in a protein that is defective in localization to the photoreceptor outer segment , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[95]  D. Oprian,et al.  Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness , 1994, Nature.

[96]  C. Montell,et al.  Dependence of calmodulin localization in the retina on the NINAC unconventional myosin. , 1993, Science.

[97]  D. Oprian,et al.  Heterozygous missense mutation in the rhodopsin gene as a cause of congenital stationary night blindness , 1993, Nature Genetics.

[98]  C. Zuker,et al.  Arrestin function in inactivation of G protein-coupled receptor rhodopsin in vivo. , 1993, Science.

[99]  R. Hardie,et al.  Protein kinase C is required for light adaptation in Drosophila photoreceptors , 1993, Nature.

[100]  D. Oprian,et al.  Constitutively active mutants of rhodopsin , 1992, Neuron.

[101]  W. Pak,et al.  Degeneration of photoreceptors in rhodopsin mutants of Drosophila. , 1992, Journal of neurobiology.

[102]  R. Hardie,et al.  The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors , 1992, Neuron.

[103]  D. S. Williams,et al.  Differential localizations of and requirements for the two Drosophila ninaC kinase/myosins in photoreceptor cells , 1992, The Journal of cell biology.

[104]  C. Zuker,et al.  Photoreceptor deactivation and retinal degeneration mediated by a photoreceptor-specific protein kinase C. , 1991, Science.

[105]  C. Stevens,et al.  A Drosophila mutant defective in extracellular calcium-dependent photoreceptor deactivation and rapid desensitization , 1991, Nature.

[106]  C. Zuker,et al.  The cyclophilin homolog ninaA is required in the secretory pathway , 1991, Cell.

[107]  C. M. Davenport,et al.  Rhodopsin mutations in autosomal dominant retinitis pigmentosa. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[108]  H. Matsumoto,et al.  Phosrestins I and II: arrestin homologs which undergo differential light-induced phosphorylation in the Drosophila photoreceptor in vivo. , 1991, Biochemical and biophysical research communications.

[109]  C. Zuker,et al.  The cyclophilin homolog ninaA is a tissue-specific integral membrane protein required for the proper synthesis of a subset of Drosophila rhodopsins , 1991, Cell.

[110]  C. Zuker,et al.  Isolation of a novel visual-system-specific arrestin: an in vivo substrate for light-dependent phosphorylation , 1990, Mechanisms of Development.

[111]  D. S. Williams,et al.  Identification of actin filaments in the rhabdomeral microvilli of Drosophila photoreceptors , 1990, The Journal of cell biology.

[112]  David W. Yandell,et al.  A point mutation of the rhodopsin gene in one form of retinitis pigmentosa , 1990, Nature.

[113]  W. Pak,et al.  Drosophila ninaA gene encodes an eye-specific cyclophilin (cyclosporine A binding protein). , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[114]  G. Mardon,et al.  Isolation and characterization of two new Drosophila protein kinase C genes, including one specifically expressed in photoreceptor cells , 1989, Cell.

[115]  C. Zuker,et al.  The ninaA gene required for visual transduction in Drosophila encodes a homologue of cyclosporin A-binding protein , 1989, Nature.

[116]  T. Kiefhaber,et al.  Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins , 1989, Nature.

[117]  T. Hayano,et al.  Peptidyl-prolyl cis-trans isomerase is the cyclosporin A-binding protein cyclophilin , 1989, Nature.

[118]  Y. Oda,et al.  Dependency on light and vitamin A derivatives of the biogenesis of 3- hydroxyretinal and visual pigment in the compound eyes of Drosophila melanogaster , 1988, The Journal of general physiology.

[119]  S. Benzer,et al.  Transcript localization of four opsin genes in the three visual organs of Drosophila; RH2 is ocellus specific , 1988, Nature.

[120]  G. Rubin,et al.  The Drosophila ninaC locus encodes two photoreceptor cell specific proteins with domains homologous to protein kinases and the myosin heavy chain head , 1988, Cell.

[121]  G. Rubin,et al.  Analysis of the promoter of the Rh2 opsin gene in Drosophila melanogaster. , 1987, Genetics.

[122]  G. Rubin,et al.  A second opsin gene expressed in the ultraviolet-sensitive R7 photoreceptor cells of Drosophila melanogaster , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[123]  G. Rubin,et al.  A rhodopsin gene expressed in photoreceptor cell R7 of the Drosophila eye: homologies with other signal-transducing molecules , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[124]  W. Pak,et al.  Gene encoding cytoskeletal proteins in Drosophila rhabdomeres. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[125]  E. Meyerowitz,et al.  An opsin gene that is expressed only in the R7 photoreceptor cell of Drosophila. , 1987, The EMBO journal.

[126]  K. Tsukida,et al.  A fly, Drosophila melanogaster, forms 11-cis 3-hydroxyretinal in the dark , 1986, Vision Research.

[127]  W L Pak,et al.  Electrophysiological study of Drosophila rhodopsin mutants , 1986, The Journal of general physiology.

[128]  G. Rubin,et al.  An opsin gene expressed in only one photoreceptor cell type of the Drosophila eye , 1986, Cell.

[129]  G. Rubin,et al.  Isolation and structure of a rhodopsin gene from D. melanogaster , 1985, Cell.

[130]  Richard L. Martin,et al.  The Drosophila ninaE gene encodes an opsin , 1985, Cell.

[131]  Tatsuo Suzuki,et al.  3-Dehydroretinal (vitamin A2 aldehyde) in crayfish eye , 1984, Vision Research.

[132]  J. Nathans,et al.  Isolation and nucleotide sequence of the gene encoding human rhodopsin. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[133]  W. Pak,et al.  Light-induced phosphorylation of retina-specific polypeptides of Drosophila in vivo. , 1984, Science.

[134]  J. Nathans,et al.  Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin , 1983, Cell.

[135]  W. Pak,et al.  Drosophila locus with gene-dosage effects on rhodopsin. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[136]  W. Pak,et al.  Freeze-fracture study of the Drosophila photoreceptor membrane: mutations affecting membrane particle density , 1982, The Journal of cell biology.

[137]  R. S. Conrad,et al.  Mutation that selectively affects rhodopsin concentration in the peripheral photoreceptors of Drosophila melanogaster , 1981, The Journal of general physiology.

[138]  D. Burgess,et al.  Identification and organization of the components in the isolated microvillus cytoskeleton , 1979, The Journal of cell biology.

[139]  W. Harris,et al.  Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster , 1976, The Journal of physiology.

[140]  W. Pak,et al.  Isolation of light-induced response of the central retinula cells from the electroretinogram ofDrosophila , 1975, Journal of comparative physiology.

[141]  W. Pak,et al.  Drosophila rhodopsin: photochemistry, extraction and differences in the norp AP12 phototransduction mutant. , 1974, Biochemical and biophysical research communications.

[142]  W. Pak,et al.  Fast Electrical Potential from a Long-Lived, Long-Wavelength Photoproduct of Fly Visual Pigment , 1974, The Journal of general physiology.

[143]  W. S. Stark The effect of eye colour pigments on the action spectrum of Drosophila. , 1973, Journal of insect physiology.

[144]  G. K. Strother,et al.  Microspectrophotometry of Arthropod Visual Screening Pigments , 1972, The Journal of general physiology.

[145]  S. Hochstein,et al.  A Visual Pigment with Two Physiologically Active Stable States , 1972, Science.

[146]  Joel E. Brown,et al.  Ultraviolet-Induced Sensitivity to Visible Light in Ultraviolet Receptors of Limulus , 1972, The Journal of general physiology.

[147]  A. Manning,et al.  Abnormal Electroretinogram from a Drosophila Mutant , 1969, Nature.

[148]  W. Pak,et al.  Nonphototactic Mutants in a Study of Vision of Drosophila , 1969, Nature.

[149]  H. Langer Über die Pigmentgranula im Facettenauge von Calliphora erythrocephala , 1967, Zeitschrift für vergleichende Physiologie.

[150]  E. Berson Retinitis Pigmentosa and Allied Diseases , 2008 .

[151]  M. Caterina Physiology and Pharmacology of Temperature Regulation Transient receptor potential ion channels as participants in thermosensation and thermoregulation , 2006 .

[152]  G. Rubin,et al.  Analysis of the Promoter of the Rh 2 Opsin Gene in Drosophila melanogaster , 2002 .

[153]  J. Bermak,et al.  Accessory proteins in the biogenesis of G protein-coupled receptors. , 2001, Molecular interventions.

[154]  J. Lintig,et al.  Filling the Gap in Vitamin A Research MOLECULAR IDENTIFICATION OF AN ENZYME CLEAVING b -CAROTENE TO RETINAL* , 2000 .

[155]  C. Montell,et al.  Requirement for the PDZ Domain Protein, INAD, for Localization of the TRP Store-Operated Channel to a Signaling Complex , 1997, Neuron.

[156]  D. Papatsenko,et al.  A new rhodopsin in R 8 photoreceptors of Drosophila : evidence for coordinate expression with Rh 3 in R 7 cells , 1997 .

[157]  D. S. Williams,et al.  Role of the ninaC proteins in photoreceptor cell structure: ultrastructure of ninaC deletion mutants and binding to actin filaments. , 1996, Cell motility and the cytoskeleton.

[158]  W. Engels P elements in Drosophila. , 1996, Current topics in microbiology and immunology.

[159]  B. Niemeyer,et al.  A novel protein encoded by the inad gene regulates recovery of visual transduction in drosophila , 1995, Neuron.

[160]  D. S. Williams,et al.  Distribution of the myosin I-like ninaC proteins in the Drosophila retina and ultrastructural analysis of mutant phenotypes. , 1992, Journal of cell science.

[161]  A. Bird,et al.  A 3-bp deletion in the rhodopsin gene in a family with autosomal dominant retinitis pigmentosa. , 1991, American journal of human genetics.

[162]  K. Vogt Distribution of Insect Visual Chromophores: Functional and Phylogenetic Aspects , 1989 .

[163]  W. Pak,et al.  Morphological defects in oraJK84 photoreceptors caused by mutation in R1-6 opsin gene of Drosophila. , 1989, Journal of neurogenetics.

[164]  W. Stark,et al.  Ultrastructure of the retina of Drosophila melanogaster: the mutant ora (outer rhabdomeres absent) and its inhibition of degeneration in rdgB (retinal degeneration-B). , 1987, Journal of neurogenetics.

[165]  W. Pak,et al.  Drosophila mutants with reduced rhodopsin content. , 1983, Symposia of the Society for Experimental Biology.

[166]  W. Pak,et al.  Photoreceptor function. , 1980, Basic life sciences.

[167]  X. Breakefield Neurogenetics : genetic approaches to the nervous system , 1979 .

[168]  B. Minke,et al.  Isolation of light-induce response of the central retinular cells from the electroretinogram of Drosophila , 1975 .

[169]  M Heisenberg,et al.  Isolation of mutants lacking the optomotor response , 1971 .

[170]  B. Minke,et al.  Frontiers in Cellular Neuroscience Cellular Neuroscience Review Article Drosophila Photoreceptors and Signaling Mechanisms Structural and Optical Properties of the Diptera Compound Eye , 2022 .