Modification and verification of Miedema model for predicating thermodynamic properties of binary precipitates in multi-element alloys

[1]  Y. Huang,et al.  Effects of Zr Addition on Thermodynamic and Kinetic Properties of Liquid Mg-6Zn-xZr Alloys , 2019, Metals.

[2]  Yi-Nan Zhang,et al.  Experimental investigation of the MgZnZr ternary system at 450 °C , 2016 .

[3]  D. Sediako,et al.  Solidification Behavior of Mg-Zn and Mg-Zn-Zr Alloys Using In-Situ Neutron Diffraction , 2015, Journal of Materials Engineering and Performance.

[4]  P. Chartrand,et al.  Al–Mg–RE (RE = La, Ce, Pr, Nd, Sm) systems: Thermodynamic evaluations and optimizations coupled with key experiments and Miedema’s model estimations , 2013 .

[5]  M. Medraj,et al.  Critical assessment and thermodynamic modeling of Mg-Zn, Mg-Sn, Sn-Zn and Mg-Sn-Zn systems , 2012 .

[6]  Canhui Xu,et al.  An improved atomic size factor used in Miedema’s model for binary transition metal systems , 2011 .

[7]  Song Li,et al.  Isothermal section of MgZnZr ternary system at 345 C , 2011 .

[8]  P. Liaw,et al.  Solid‐Solution Phase Formation Rules for Multi‐component Alloys , 2008 .

[9]  B. Liu,et al.  A thermodynamic model proposed for calculating the standard formation enthalpies of ternary alloy systems , 2007 .

[10]  Xing-Qiu Chen,et al.  Miedema’s model revisited: The parameter ϕ∗ for Ti, Zr, and Hf , 2006 .

[11]  M. Morishita,et al.  Thermodynamics of the formation of magnesium–zinc intermetallic compounds in the temperature range from absolute zero to high temperature , 2006 .

[12]  Zi-kui Liu,et al.  Thermodynamic modelling of the Zn–Zr system , 2006 .

[13]  Zi-kui Liu,et al.  Modification of the thermodynamic model for the Mg–Zr system , 2005 .

[14]  Guohua Wu,et al.  Tensile properties of extruded ZK60-RE alloys , 2003 .

[15]  Bin Liu,et al.  Proposed model for calculating the standard formation enthalpy of binary transition-metal systems , 2002 .

[16]  Bangwei Zhang,et al.  Formation energy of ternary alloy systems calculated by an extended Miedema model , 2002 .

[17]  Kuo-Chin Chou,et al.  A new generation solution model for predicting thermodynamic properties of a multicomponent system from binaries , 1997 .

[18]  K. Chou A general solution model for predicting ternary thermodynamic properties , 1995 .

[19]  B. Conway Individual solvated ion properties and specificity of ion adsorption effects in processes at electrodes , 1993 .

[20]  G. Borzone,et al.  Computer coupling of thermodynamics and phase diagrams: the gadolinium-magnesium system as an example , 1992 .

[21]  W. Kohn,et al.  Theory of Metal Surfaces: Work Function , 1971 .

[22]  Z. Tie-yong THERMODYNAMIC ANALYSIS OF THE PRECIPITATION BEHAVIORS OF Al-M(M=Sr, Nd) PHASES IN Mg-Al-M ALLOYS , 2006 .

[23]  G Xueyong,et al.  MODELS OF ACTIVITY AND ACTIVITY INTERACTION PARAMETER IN TERNARY METALLIC MELT , 1994 .

[24]  Song Deyu MICROSTRUCTURE OF Mg-Zn-Zr-Y ALLOYS , 1994 .

[25]  J. Smith,et al.  Thermodynamics of formation of compounds in the Ce-Mg, Nd-Mg, Gd-Mg, Dy-Mg, Er-Mg, and Lu-Mg binary systems in the temperature range 650°to 930°K , 1972 .

[26]  G. Strauss,et al.  THERMOCHEMISTRY OF ALLOYS , 1961 .