A variational adiabatic hyperspherical finite element R matrix methodology: general formalism and application to H + H2 reaction

Abstract The aim of this paper is to present an efficient numerical procedure for the theoretical study of bimolecular reactions. It is based on the R matrix variational formalism and the p-version of the finite element method (p-FEM) for expanding the wave function in a finite basis set, and facilitates the development of an efficient algorithm to invert matrices that significantly reduces the computational time in R matrix calculations. We also utilise the self-consistent finite element method to optimise the elements mesh and provide faster convergence of results. We apply our methodology to the study of the collinear H + H2 process and evaluate its efficiency by comparing our results with several results previously published in the literature.

[1]  E. Wigner,et al.  Higher Angular Momenta and Long Range Interaction in Resonance Reactions , 1947 .

[2]  W. Kohn Variational Methods in Nuclear Collision Problems , 1948 .

[3]  J. L. Jackson A Variational Approach to Nuclear Reactions , 1951 .

[4]  F. Smith Generalized Angular Momentum in Many-Body Collisions , 1960 .

[5]  Matrices and Tensors , 1963 .

[6]  B. Schneider R-matrix theory for electron-atom and electron-molecule collisions using analytic basis set expansions , 1975 .

[7]  C. Horowitz,et al.  Functional representation of Liu and Siegbahn’s accurate ab initio potential energy calculations for H+H2 , 1978 .

[8]  J. Roemelt,et al.  The collinear F + H2 reaction evaluated by S-matrix propagation along delves' radial coordinate , 1980 .

[9]  J. Kaye,et al.  Hyperspherical coordinates in quantum mechanical collinear reactive scattering , 1980 .

[10]  D. Bondi,et al.  A new numerical method for collinear quantum reactive scattering using delves' coordinates: application to the H + H2(n ⩽ 7) → H2(m ⩽ 7) + H reaction , 1982 .

[11]  J. Linderberg,et al.  Hyperspherical coordinates in four particle systems , 1983 .

[12]  D. Bondi,et al.  Accurate quantum reaction probabilities for the collinear H+H2(n≤7) → H2(m≤7)+H chemical reaction using the Liu–Siegbahn–Truhlar–Horowitz potential energy surface , 1985 .

[13]  P. W. Langhoff,et al.  Molecular astrophysics: State of the art and future directions; Proceedings of the Advanced Research Workshop, Bad Windsheim, West Germany, July 8-14, 1984 , 1985 .

[14]  A. Kuppermann,et al.  Three‐dimensional quantum mechanical reactive scattering using symmetrized hyperspherical coordinates , 1986 .

[15]  G. A. Parker,et al.  Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates. tests on H+H2 and D+H2 , 1987 .

[16]  J. Linderberg,et al.  Reactive scattering in hyperspherical coordinates , 1987 .

[17]  McCurdy,et al.  Interrelation between variational principles for scattering amplitudes and generalized R-matrix theory. , 1987, Physical review. A, General physics.

[18]  G. A. Parker,et al.  Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates. Theory , 1987 .

[19]  Finite element methods in quantum mechanics , 1987 .

[20]  R. Jaquet Investigations with the finite element method. II. The collinear F + H2 reaction , 1987 .

[21]  R. Jaquet Investigations with the finite element method on the Cyber 205 , 1987 .

[22]  J. Launay,et al.  Hyperspherical close-coupling calculation of integral cross sections for the reaction H+H2→H2+H , 1989 .

[23]  J. Linderberg,et al.  Numerical implementation of reactive scattering theory , 1989 .

[24]  J. Linderberg An algorithm for R matrix calculations for atom–diatom reactive scattering , 1989 .

[25]  J. Launay,et al.  Quantum-mechanical calculation of integral cross sections for the reaction F+H2(v=0, j=0)→FH(v′ j′)+H by the hyperspherical method , 1990 .

[26]  R. Jaquet Application of the finite element method to eigenvalue problems I. One dimensional calculations using optimized elements , 1990 .

[27]  M. Ratner,et al.  Advances in Molecular Vibrations and Collision Dynamics , 1991 .

[28]  X. Chapuisat Exact quantum molecular hamiltonians: II. On the choice of the moving frame of reference. The principal axis system , 1991 .

[29]  J. Linderberg,et al.  Photodissociation of triatomic molecules : formulation of the three-dimensional problem , 1991 .

[30]  J. Launay Computation of cross sections for the F+H2(v=0,j=0) → FH(v′j)+H reaction by the hyperspherical method , 1991 .

[31]  D. Colbert,et al.  A novel discrete variable representation for quantum mechanical reactive scattering via the S-matrix Kohn method , 1992 .

[32]  L. Yang,et al.  Relativistic self-consistent calculations for small diatomic molecules by the finite element method , 1992 .

[33]  T. Seideman A new method for the calculation of photodissociation cross sections , 1993 .

[34]  Joaquim José Soares Neto,et al.  Parallel algorithm for calculating ro‐vibrational states of diatomic molecules , 1994, J. Comput. Chem..

[35]  F. V. Prudente,et al.  A novel finite element method implementation for calculating bound states of triatomic systems: Application to the water molecule , 1994 .

[36]  H. Meyer,et al.  Reactive scattering using the multiconfiguration time‐dependent Hartree approximation: General aspects and application to the collinear H+H2→H2+H reaction , 1995 .

[37]  R. Wyatt,et al.  Dynamics of molecules and chemical reactions , 1996 .

[38]  A. Kuppermann Reactive Scattering with Row-Orthonormal Hyperspherical Coordinates. 2. Transformation Properties and Hamiltonian for Tetraatomic Systems , 1996 .

[39]  Youhong Huang,et al.  Further analysis of solutions to the time‐independent wave packet equations of quantum dynamics. II. Scattering as a continuous function of energy using finite, discrete approximate Hamiltonians , 1996 .

[40]  D. Hoffman,et al.  Reactant–product decoupling approach to state-resolved reactive scattering Time-independent wavepacket formulation , 1997 .

[41]  V. Aquilanti,et al.  The quantum-mechanical Hamiltonian for tetraatomic systems in symmetric hyperspherical coordinates , 1997 .

[42]  J. Linderberg Modelling unimolecular reactions , 1997 .

[43]  D. Clary,et al.  Quantum theory of four-atom reactions using arrangement channel hyperspherical coordinates: Formulation and application to OH+H2↔H2O+H , 1997 .

[44]  W. Miller,et al.  Optimized preconditioners for Green function evaluation in quantum reactive scattering calculations , 1997 .

[45]  V. Aquilanti,et al.  Hyperquantization algorithm. I. Theory for triatomic systems , 1998 .

[46]  J. Linderberg Beyond the transition state treatment , 1998 .

[47]  V. Aquilanti,et al.  Hyperquantization algorithm. II. Implementation for the F+H2 reaction dynamics including open-shell and spin-orbit interactions , 1998 .

[48]  S. Gray,et al.  Quantum dynamics with real wave packets, including application to three-dimensional (J=0) D + H2 → HD + H reactive scattering , 1998 .

[49]  F. V. Prudente,et al.  Quantum scattering using a novel implementation based on the variational R matrix formalism and the finite element method: a comparative study , 1999 .

[50]  F. V. Prudente,et al.  Optimized mesh for the finite-element method using a quantum-mechanical procedure , 1999 .

[51]  D. Manolopoulos,et al.  ABC: a quantum reactive scattering program , 2000 .

[52]  Seokmin Shin,et al.  Reactive scattering on multiple electronic surfaces: Collinear A+BC-->AB+C reaction , 2000 .

[53]  G. Nyman,et al.  Quantum theory of bimolecular chemical reactions , 2000 .

[54]  Timothy J. Dudley,et al.  Finite element method for two-dimensional vibrational wave functions: Theory and application to van der Waals molecules , 2001 .

[55]  J. Pask,et al.  Finite-element methods in electronic-structure theory , 2001 .

[56]  Guohui Li,et al.  A single Lanczos propagation method for calculating transition amplitudes. III. S-matrix elements with a complex-symmetric Hamiltonian , 2001 .

[57]  L. Ram-Mohan Finite Element and Boundary Element Applications in Quantum Mechanics , 2002 .

[58]  H. L. Rouzo Variational R-matrix method for quantum tunneling problems , 2003 .

[59]  D. Clary,et al.  Quantum scattering calculations on chemical reactions. , 2003, Annual review of physical chemistry.

[60]  Sean C. Smith,et al.  Full S matrix calculation via a single real-symmetric Lanczos recursion: the Lanczos artificial boundary inhomogeneity method. , 2004, The Journal of chemical physics.

[61]  Decoherence effects in reactive scattering. , 2005, The Journal of chemical physics.

[62]  M. N. Guimarães,et al.  A study of the confined hydrogen atom using the finite element method , 2005 .

[63]  G. Schatz,et al.  Theories of reactive scattering. , 2006, The Journal of chemical physics.

[64]  Hiroki Nakamura Dynamics of nonadiabatic chemical reactions. , 2006, The journal of physical chemistry. A.

[65]  S. Y. Larsen,et al.  Benchmark Kantorovich calculations for three particles on a line , 2006 .

[66]  W. Miller,et al.  Chemical reaction rates using the semiclassical Van Vleck initial value representation. , 2007, The Journal of chemical physics.

[67]  P. Soldán,et al.  Molecular collisions in ultracold atomic gases , 2006, physics/0610219.

[68]  Stephen K. Gray,et al.  DIFFREALWAVE: A parallel real wavepacket code for the quantum mechanical calculation of reactive state-to-state differential cross sections in atom plus diatom collisions , 2008, Comput. Phys. Commun..

[69]  N. Elander,et al.  A theoretical study of the rovibrational levels of the bosonic van der Waals neon trimer. , 2008, The Journal of chemical physics.

[70]  G. G. Balint-Kurti Time-dependent and time-independent wavepacket approaches to reactive scattering and photodissociation dynamics , 2008 .

[71]  R. Wyatt,et al.  Application of the moving boundary truncation method to reactive scattering: H + H2, O + H2, O + HD. , 2008, The journal of physical chemistry. A.

[72]  B. Poirier Reconciling semiclassical and Bohmian mechanics. VI. Multidimensional dynamics. , 2008, The Journal of chemical physics.

[73]  D. Clary Quantum Dynamics of Chemical Reactions , 2008, Science.

[74]  R. S. Dumont,et al.  Non-normal Lanczos methods for quantum scattering. , 2008, The Journal of chemical physics.

[75]  F. V. Prudente,et al.  Time-dependent wave packet calculation of the LiH + H reactive scattering on a new potential energy surface , 2009 .

[76]  J. Zimmer,et al.  Calculation of long time classical trajectories: algorithmic treatment and applications for molecular systems. , 2009, The Journal of chemical physics.

[77]  Stephen Wiggins,et al.  The quantum normal form approach to reactive scattering: The cumulative reaction probability for collinear exchange reactions. , 2009, The Journal of chemical physics.

[78]  R Alizadegan,et al.  A divide and conquer real space finite-element Hartree-Fock method. , 2010, The Journal of chemical physics.

[79]  M. N. Guimarães,et al.  A study of the electron structure of endohedrally confined atoms using a model potential , 2011 .