Non-integrability of the axisymmetric Bianchi IX cosmological model via Differential Galois Theory

We investigate the integrability of an anisotropic universe with matter and cosmological constant formulated as Bianchi IX models. The presence of the cosmological constant causes the existence of a critical point in the finite part of the phase space. The separatrix associated to this Einstein’s static universe is entirely contained in an invariant isotropic plane forgetting the singularity at the origin. This invariant plane of isotropy is an integrable sub-space of the Taub type. In this paper we analyse the differential Galois group of the second order variational equations to this plane in order to apply the integrability theorem of the second author with Ramis and Simó. The main result is that the model is non-integrable by meromorphic functions.

[1]  J. Barrow Chaotic behaviour in general relativity , 1982 .

[2]  Teresa Crespo,et al.  Algebraic Groups and Differential Galois Theory , 2011 .

[3]  Jacques-Arthur Weil,et al.  Galoisian Approach to integrability of Schrodinger Equation , 2010, 1008.3445.

[4]  T. Stuchi,et al.  Homoclinic chaos in axisymmetric Bianchi IX cosmologies reexamined , 2005 .

[5]  Juan José Morales Ruiz,et al.  Differential Galois Theory and Non-Integrability of Hamiltonian Systems , 1999 .

[6]  S. Novikov,et al.  Singularities of the cosmological model of the Bianchi IX type according to the qualitative theory of differential equations , 1973 .

[7]  D. Blázquez-Sanz,et al.  Non-integrability of some hamiltonians with rational potentials , 2006, math-ph/0610010.

[8]  G. Francisco,et al.  Qualitative and numerical study of bianchi IX models , 1988 .

[9]  Jerald J. Kovacic,et al.  An Algorithm for Solving Second Order Linear Homogeneous Differential Equations , 1986, J. Symb. Comput..

[10]  C. Simó,et al.  Integrability of hamiltonian systems and differential Galois groups of higher variational equations , 2007 .

[11]  Chara Pantazi,et al.  Differential Galois theory and non-integrability of planar polynomial vector fields , 2017, Journal of Differential Equations.

[12]  V. Belinskiǐ,et al.  Oscillatory approach to a singular point in the relativistic cosmology , 1970 .

[13]  F. Murnaghan,et al.  LINEAR ALGEBRAIC GROUPS , 2005 .

[14]  A. Taub Empty Space-Times Admitting a Three Parameter Group of Motions , 1951 .

[15]  J. Ramis,et al.  GALOISIAN OBSTRUCTIONS TO INTEGRABILITY OF HAMILTONIAN SYSTEMS: STATEMENTS AND EXAMPLES , 1999 .

[16]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[17]  A. Ronveaux,et al.  Heun's differential equations , 1995 .

[18]  K. Yagasaki,et al.  Nonintegrability of the unfoldings of codimension-two bifurcations , 2019, Nonlinearity.

[19]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[20]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[21]  T. Stuchi,et al.  Chaos in anisotropic preinflationary universes , 1997, gr-qc/9702044.

[22]  Marius van der Put,et al.  Galois Theory of Linear Differential Equations , 2012 .

[23]  The Mixmaster universe is chaotic , 1996, gr-qc/9605029.