Visual end‐effector position error compensation for planetary robotics

This paper describes a vision-guided manipulation algorithm that improves arm end-effector positioning to subpixel accuracy and meets the highly restrictive imaging and computational constraints of a planetary robotic flight system. Analytical, simulation-based, and experimental analyses of the algorithm's effectiveness and sensitivity to camera and arm model error is presented along with results on several prototype research systems and “ground-in-the-loop” technology experiments on the Mars Exploration Rover (MER) vehicles. A computationally efficient and robust subpixel end-effector fiducial detector that is instrumental to the algorithm's ability to achieve high accuracy is also described along with its validation results on MER data. © 2007 Wiley Periodicals, Inc.

[1]  Edward Tunstel,et al.  Mars Exploration Rover mobility and robotic arm operational performance , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[2]  Joseph F. Snyder,et al.  An overview of the Mars exploration rovers' flight software , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[3]  Steven B. Skaar,et al.  Camera-Space Manipulation , 1987 .

[4]  M. Klimesh,et al.  Mars Exploration Rover engineering cameras , 2003 .

[5]  Paul S. Schenker,et al.  Autonomous image-plane robot control for Martian lander operations , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[6]  P. Backes,et al.  Automated rover positioning and instrument placement , 2005, 2005 IEEE Aerospace Conference.

[7]  Nicolas Thomas,et al.  The MVACS Robotic Arm Camera , 2001 .

[8]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[9]  J. Denavit,et al.  A kinematic notation for lower pair mechanisms based on matrices , 1955 .

[10]  Terrance L. Huntsberger,et al.  Closed loop control for autonomous approach and placement of science instruments by planetary rovers , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Ashitey Trebi-Ollennu,et al.  Robotic arm in-situ operations for the Mars Exploration Rovers surface mission , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[12]  Nikolaos Papanikolopoulos,et al.  Eye-in-hand robotic tasks in uncalibrated environments , 1997, IEEE Trans. Robotics Autom..

[13]  Pradeep K. Khosla,et al.  Robotic visual servoing and robotic assembly tasks , 1996, IEEE Robotics Autom. Mag..

[14]  E. Malis,et al.  2 1/2 D Visual Servoing , 1999 .

[15]  Steven B. Skaar,et al.  High-precision visual control of mobile manipulators , 2002, IEEE Trans. Robotics Autom..

[16]  Paul S. Schenker,et al.  Mars Volatiles and Climate Surveyor Robotic Arm , 2001 .

[17]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[18]  D. Gennery,et al.  Calibration and Orientation of Cameras in Computer Vision , 2001 .

[19]  D. Gennery Least-Squares Camera Calibration Including Lens Distortion and Automatic Editing of Calibration Points , 2001 .

[20]  E.T. Baumgartner,et al.  The Mars Exploration Rover instrument positioning system , 2005, 2005 IEEE Aerospace Conference.

[21]  François Chaumette,et al.  2½D visual servoing , 1999, IEEE Trans. Robotics Autom..

[22]  Peter K. Allen,et al.  Real-time visual servoing , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[23]  A. Diaz-Calderon,et al.  Target tracking, approach, and camera handoff for automated instrument placement , 2005, 2005 IEEE Aerospace Conference.