Limitation of Perpetual Points for Confirming Conservation in Dynamical Systems

Perpetual Points (PPs) have been introduced as an interesting new topic in nonlinear dynamics, and there is a hypothesis that these points can determine whether a system is dissipative or not. This paper demonstrates that this hypothesis is not true since there are counterexamples. Furthermore, we explain that it is impossible to determine dissipation of a system based only on the structure of the system and its equations.

[1]  Nikolay V. Kuznetsov,et al.  Hidden oscillations in nonlinear control systems , 2011 .

[2]  U. Feudel,et al.  Control of multistability , 2014 .

[3]  Sajad Jafari,et al.  Three-dimensional chaotic autonomous system with only one stable equilibrium: Analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form , 2014 .

[4]  G. Leonov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[5]  Nikolay V. Kuznetsov,et al.  Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits , 2011 .

[6]  G. Leonov,et al.  Hidden Oscillations in Dynamical Systems. 16 Hilbert’s Problem, Aizerman’s and Kalman’s Conjectures, Hidden Attractors in Chua’s Circuits , 2014 .

[7]  Tomasz Kapitaniak,et al.  Co-existing attractors of impact oscillator , 1998 .

[8]  Guanrong Chen,et al.  A chaotic system with only one stable equilibrium , 2011, 1101.4067.

[9]  Viet-Thanh Pham,et al.  Is that Really Hidden? The Presence of Complex Fixed-Points in Chaotic Flows with No Equilibria , 2014, Int. J. Bifurc. Chaos.

[10]  Awadhesh Prasad,et al.  Perpetual points and hidden attractors in dynamical systems , 2015 .

[11]  Vesely,et al.  Canonical dynamics of the Nosé oscillator: Stability, order, and chaos. , 1986, Physical review. A, General physics.

[12]  Viet-Thanh Pham,et al.  Constructing a Novel No-Equilibrium Chaotic System , 2014, Int. J. Bifurc. Chaos.

[13]  Awadhesh Prasad,et al.  Existence of Perpetual Points in Nonlinear Dynamical Systems and Its Applications , 2014, Int. J. Bifurc. Chaos.

[14]  Nikolay V. Kuznetsov,et al.  Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor , 2014 .

[15]  Nikolay V. Kuznetsov,et al.  Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity , 2015, Commun. Nonlinear Sci. Numer. Simul..

[16]  Julien Clinton Sprott,et al.  Simple chaotic flows with a line equilibrium , 2013 .

[17]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.

[18]  Tomasz Kapitaniak,et al.  LOCALLY AND GLOBALLY RIDDLED BASINS IN TWO COUPLED PIECEWISE-LINEAR MAPS , 1997 .

[19]  Julien Clinton Sprott,et al.  Elementary quadratic chaotic flows with no equilibria , 2013 .

[20]  Zhouchao Wei,et al.  Dynamical behaviors of a chaotic system with no equilibria , 2011 .

[21]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[22]  G. Leonov,et al.  Hidden oscillations in dynamical systems , 2011 .

[23]  T. Kapitaniak,et al.  NOISE-ENHANCED PHASE LOCKING IN A STOCHASTIC BISTABLE SYSTEM DRIVEN BY A CHAOTIC SIGNAL , 1999 .

[24]  Nikolay V. Kuznetsov,et al.  Analytical-numerical method for attractor localization of generalized Chua's system , 2010, PSYCO.

[25]  Hoover Remark on "Some simple chaotic flows" , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  Guanrong Chen,et al.  Constructing a chaotic system with any number of equilibria , 2012, 1201.5751.

[27]  Julien Clinton Sprott,et al.  A dynamical system with a strange attractor and invariant tori , 2014 .

[28]  J C Sprott,et al.  Comment on "how to obtain extreme multistability in coupled dynamical systems". , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Luigi Fortuna,et al.  From Physics to Control Through an Emergent View , 2010 .

[30]  E. Ott Chaos in Dynamical Systems: Contents , 2002 .

[31]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[32]  Eduardo Sontag,et al.  Untangling the wires: A strategy to trace functional interactions in signaling and gene networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[33]  G. A. Leonov,et al.  Hidden Oscillation in Dynamical Systems , 2010 .

[34]  Tomasz Kapitaniak,et al.  Dynamics of impact oscillator with dry friction , 1996 .

[35]  Julien Clinton Sprott,et al.  Simple Chaotic flows with One Stable equilibrium , 2013, Int. J. Bifurc. Chaos.

[36]  I. VagaitsevV.,et al.  Localization of hidden Chua ’ s attractors , 2022 .

[37]  Nikolay V. Kuznetsov,et al.  Prediction of Hidden Oscillations Existence in Nonlinear Dynamical Systems: Analytics and Simulation , 2013, NOSTRADAMUS.

[38]  Nikolay V. Kuznetsov,et al.  Analytical-Numerical Methods for Hidden Attractors’ Localization: The 16th Hilbert Problem, Aizerman and Kalman Conjectures, and Chua Circuits , 2013 .

[39]  S. Strogatz Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering , 1995 .

[40]  Julien Clinton Sprott,et al.  Cost Function Based on Gaussian Mixture Model for Parameter Estimation of a Chaotic Circuit with a Hidden Attractor , 2014, Int. J. Bifurc. Chaos.

[41]  Mw Hirsch,et al.  Chaos In Dynamical Systems , 2016 .

[42]  T. Kapitaniak,et al.  Stochastic response with bifurcations to non-linear Duffing's oscillator , 1985 .

[43]  Julien Clinton Sprott,et al.  Heat conduction, and the lack thereof, in time-reversible dynamical systems: generalized Nosé-Hoover oscillators with a temperature gradient. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.