The chemistry of the destruction of organophosphorus compounds in flames—IV: destruction of DIMP in a flame of H2 + O2 + Ar

[1]  O. Korobeinichev,et al.  The destruction chemistry of organophosphorus compounds in flames—I: quantitative determination of final phosphorus-containing species in hydrogen-oxygen flames , 1999 .

[2]  O. Korobeinichev,et al.  The destruction chemistry of organophosphorus compounds in flames—II: structure of a hydrogen–oxygen flame doped with trimethyl phosphate , 1999 .

[3]  J. Werner,et al.  Kinetic model for the decomposition of DMMP in a hydrogen/oxygen flame , 1999 .

[4]  E. Fisher,et al.  Gas-Phase Pyrolysis of Diisopropyl Methylphosphonate , 1998 .

[5]  A. Twarowski The temperature dependence of H + OH recombination in phosphorus oxide containing post-combustion gases , 1996 .

[6]  A. Twarowski Reduction of a phosphorus oxide and acid reaction set , 1995 .

[7]  D. Hildenbrand,et al.  Thermochemical properties of gaseous POBr and some H–P–O species , 1994 .

[8]  A. Twarowski The influence of phosphorus oxides and acids on the rate of H + OH recombination , 1993 .

[9]  J. W. Fleming,et al.  An Improved Noncatalytic Coating for Thermocouples , 1992 .

[10]  R. J. Kee,et al.  Chemkin-II : A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics , 1991 .

[11]  E. Wils Mass spectral data of precursors of chemical warfare agents , 1990 .

[12]  A. Winer,et al.  Atmospheric loss processes of 1,2-dibromo-3-chloropropane and trimethyl phosphate. , 1986, Environmental science & technology.

[13]  D. Kittelson,et al.  Heat and mass transfer considerations in the use of electrically heated thermocouples of iridium versus an iridiumrhodium alloy in atmospheric pressure flames , 1977 .