Bimodality and Phase Transitions in the Profile Variance of Random Binary Search Trees

We show that the variances of the profile (number of nodes at each level) of random binary search trees undergoes asymptotically four phase transitions and exhibits a bimodal or "two-humped" behavior, in contrast to the unimodality of the expected value of the profiles. Precise asymptotic approximations are derived. The same types of phenomena also hold for the profile of random recursive trees.

[1]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[2]  Hosam M. Mahmoud,et al.  Evolution of random search trees , 1991, Wiley-Interscience series in discrete mathematics and optimization.

[3]  J. Hammersley The Sums of Products of the Natural Numbers , 1951 .

[4]  A. Rouault,et al.  Connecting Yule Process, Bisection and Binary Search Tree via Martingales , 2004, math/0410318.

[5]  M. Drmota,et al.  The Profile of Binary Search Trees , 2001 .

[6]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[7]  Philippe Flajolet,et al.  Varieties of Increasing Trees , 1992, CAAP.

[8]  Luc Devroye,et al.  Limit Laws for Sums of Functions of Subtrees of Random Binary Search Trees , 2002, SIAM J. Comput..

[9]  Hsien-Kuei Hwang,et al.  Phase Change of Limit Laws in the Quicksort Recurrence under Varying Toll Functions , 2002, SIAM J. Comput..

[10]  Guy Louchard Exact and Asymptotic Distributions in Digital and Binary Search Trees , 1987, RAIRO Theor. Informatics Appl..

[11]  Hsien-Kuei Hwang,et al.  Profiles of Random Trees: Limit Theorems for Random Recursive Trees and Binary Search Trees , 2006, Algorithmica.

[12]  N. Bleistein,et al.  Asymptotic Expansions of Integrals , 1975 .

[13]  Luc Devroye Universal Limit Laws for Depths in Random Trees , 1998, SIAM J. Comput..

[14]  Robin Pemantle,et al.  Diffusion-limited aggregation on a tree , 1997 .

[15]  David Aldous,et al.  The Continuum Random Tree III , 1991 .

[16]  Gerald G. Brown,et al.  On Random Binary Trees , 1984, Math. Oper. Res..

[17]  B. Pittel On growing random binary trees , 1984 .

[18]  Hsien-Kuei Hwang,et al.  Transitional behaviors of the average cost of quicksort with median-of-(2t + 1) , 2001, Algorithmica.

[19]  J. Cremona,et al.  Proceedings of the London Mathematical Society , 1893 .

[20]  Satya N. Majumdar,et al.  Extreme Value Statistics and Traveling Fronts: Various Applications , 2003 .

[21]  William C. Lynch,et al.  More Combinatorial Properties of Certain Trees , 1965, Comput. J..

[22]  Guy Louchard,et al.  Average profile and limiting distribution for a phrase size in the Lempel-Ziv parsing algorithm , 1995, IEEE Trans. Inf. Theory.

[23]  Luc Devroye,et al.  On the Generation of Random Binary Search Trees , 1995, SIAM J. Comput..

[24]  D. Aldous PROBABILITY DISTRIBUTIONS ON CLADOGRAMS , 1996 .

[25]  Boris Pittel,et al.  On the Most Probable Shape of a Search Tree Grown from a Random Permutation , 1984 .

[26]  Piet Van Mieghem,et al.  On the covariance of the level sizes in random recursive trees , 2002, Random Struct. Algorithms.

[27]  Nico M. Temme,et al.  Asymptotic estimates of Stirling numbers , 1993 .

[28]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[29]  J. Moon,et al.  On the Altitude of Nodes in Random Trees , 1978, Canadian Journal of Mathematics.

[30]  J. Pitman The SDE solved by local times of a brownian excursion or bridge derived from the height profile of a random tree or forest , 1999 .

[31]  Michael Drmota,et al.  On the profile of random trees , 1997, Random Struct. Algorithms.

[32]  D. Aldous Stochastic Analysis: The Continuum random tree II: an overview , 1991 .

[33]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[34]  Luc Devroye,et al.  Branching processes in the analysis of the heights of trees , 1987, Acta Informatica.

[35]  Donald E. Knuth,et al.  The Art of Computer Programming: Volume 3: Sorting and Searching , 1998 .

[36]  Hsien-Kuei Hwang,et al.  Asymptotic expansions for the Stirling numbers of the first kind , 1995 .

[37]  Gaston H. Gonnet,et al.  Handbook Of Algorithms And Data Structures , 1984 .

[38]  D. Aldous,et al.  A diffusion limit for a class of randomly-growing binary trees , 1988 .

[39]  Bernhard Gittenberger,et al.  On the profile of random trees , 1997 .

[40]  Jean Jabbour-Hattab,et al.  Martingales and large deviations for binary search trees , 2001, Random Struct. Algorithms.

[41]  Roderick Wong,et al.  Asymptotic approximations of integrals , 1989, Classics in applied mathematics.

[42]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .