Solving Polynomial Systems for the Kinematic Analysis and Synthesis of Mechanisms and Robot Manipulators

Problems in mechanisms analysis and synthesis and robotics lead naturally to systems of polynomial equations. This paper reviews the state of the art in the solution of such systems of equations. Three well-known methods for solving systems of polynomial equations, viz., Dialytic Elimination, Polynomial Continuation, and Grobner bases are reviewed. The methods are illustrated by means of simple examples. We also review important kinematic analysis and synthesis problems and their solutions using these mathematical procedures.

[1]  George Salmon Lessons introductory to the modern higher algebra , 1885 .

[2]  M. Bôcher Introduction to higher algebra , 2013 .

[3]  B. Roth,et al.  Synthesis of Path-Generating Mechanisms by Numerical Methods , 1963 .

[4]  H. Hironaka Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero: II , 1964 .

[5]  Bernard Roth,et al.  The Kinematics of Motion Through Finitely Separated Positions , 1967 .

[6]  D. N. Bernshtein The number of roots of a system of equations , 1975 .

[7]  Ellis Horowitz,et al.  On Computing the Exact Determinant of Matrices with Polynomial Entries , 1975, JACM.

[8]  A. G. Kushnirenko,et al.  Newton polytopes and the Bezout theorem , 1976 .

[9]  A. Khovanskii Newton polyhedra and the genus of complete intersections , 1978 .

[10]  Joseph James Duffy,et al.  A displacement analysis of the general spatial 7-link, mechanism , 1980 .

[11]  Gene H. Golub,et al.  Matrix computations , 1983 .

[12]  A. Morgan,et al.  Solving the Kinematics of the Most General Six- and Five-Degree-of-Freedom Manipulators by Continuation Methods , 1985 .

[13]  A. Morgan A transformation to avoid solutions at infinity for polynomial systems , 1986 .

[14]  B. Kutzler,et al.  On the Application of Buchberger's Algorithm to Automated Geometry Theorem Proving , 1986, J. Symb. Comput..

[15]  Kok-Meng Lee,et al.  Dynamic analysis of a three-degrees-of-freedom in-parallel actuated manipulator , 1988, IEEE J. Robotics Autom..

[16]  Hong Y. Lee,et al.  Displacement analysis of the general spatial 7-link 7R mechanism , 1988 .

[17]  Kenneth J. Waldron,et al.  Kinematics of a Hybrid Series-Parallel Manipulation System , 1989 .

[18]  A. Morgan,et al.  Numerical Continuation Methods for Solving Polynomial Systems Arising in Kinematics , 1990 .

[19]  A. Morgan,et al.  SOLVING THE 6R INVERSE POSITION PROBLEM USING A GENERIC-CASE SOLUTION METHODOLOGY , 1991 .

[20]  Wei Lin,et al.  Forward Displacement Analyses of the 4-4 Stewart Platforms , 1992 .

[21]  A. Morgan,et al.  Complete Solution of the Nine-Point Path Synthesis Problem for Four-Bar Linkages , 1992 .

[22]  C. Innocenti,et al.  Closed-Form Direct Position Analysis of a 5–5 Parallel Mechanism , 1993 .

[23]  Bernard Mourrain,et al.  The 40 “generic” positions of a parallel robot , 1993, ISSAC '93.

[24]  Jorge Angeles,et al.  The Semigraphical Solution of the Direct Kinematics of General Platform-Type Parallel Manipulators , 1993 .

[25]  D. Lazard,et al.  On the Representation of Rigid-Body Motions and its Application to Generalized Platform Manipulators , 1993 .

[26]  B. Roth,et al.  Inverse Kinematics of the General 6R Manipulator and Related Linkages , 1993 .

[27]  Bernd Sturmfels,et al.  Product formulas for resultants and Chow forms , 1993 .

[28]  John F. Canny,et al.  A practical method for the sparse resultant , 1993, ISSAC '93.

[29]  D. Kohli,et al.  Inverse Kinematics of General 6R and 5R,P Serial Manipulators , 1993 .

[30]  Masoud Ghazvini,et al.  Reducing the Inverse Kinematics of Manipulators to the Solution of a Generalized Eigenproblem , 1993 .

[31]  M. Raghavan The Stewart platform of general geometry has 40 configurations , 1993 .

[32]  John F. Canny,et al.  An Efficient Algorithm for the Sparse Mixed Resultant , 1993, AAECC.

[33]  Bernard Roth Computational Advances in Robot Kinematics , 1994 .

[34]  Dinesh Manocha,et al.  Efficient inverse kinematics for general 6R manipulators , 1994, IEEE Trans. Robotics Autom..

[35]  Shin-Min Song,et al.  Forward Position Analysis of Nearly General Stewart Platforms , 1994 .

[36]  Kenneth J. Waldron,et al.  Position Kinematics of a Three-Limbed Mixed Mechanism , 1994 .

[37]  B. Roth,et al.  Structural Parameters Which Reduce the Number of Manipulator Configurations , 1994 .

[38]  J. Faugère,et al.  Combinatorial classes of parallel manipulators , 1995 .

[39]  C. Innocenti Polynomial Solution of the Spatial Burmester Problem , 1995 .

[40]  Charles W. Wampler FORWARD DISPLACEMENT ANALYSIS OF GENERAL SIX-IN-PARALLEL SPS (STEWART) PLATFORM MANIPULATORS USING SOMA COORDINATES , 1996 .

[41]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .