Production capacity planning and scheduling in a no-wait environment with controllable processing times: An integrated modeling approach

This paper develops an integrated model between a production capacity planning and an operational scheduling decision making process in which a no-wait job shop (NWJS) scheduling problem is considered incorporating with controllable processing times. The duration of any operations are assumed to be controllable variables based on the amount of capacity allocated to them, whereas in classical NWJS it is assumed that the machine capacity and hence processing times are fixed and known in advance. The suggested problem which is entitled no-wait job shop crashing (NWJSC) problem is decomposed into the crashing, sequencing and timetabling subproblems. To tackle the addressed NWJSC problem, an improved hybrid timetabling procedure is suggested by employing the concept of both non-delay and enhanced algorithms which provides better solution than each one separately. Furthermore, an effective two-phase genetic algorithm approach is devised integrating with hybrid timetabling to deal with the crashing and sequencing components. The results obtained from experimental evaluations support the outstanding performance of the proposed approach.

[1]  Sartaj Sahni,et al.  Complexity of Scheduling Shops with No Wait in Process , 1979, Math. Oper. Res..

[2]  R. Macchiaroli,et al.  Design and implementation of a tabu search algorithm to solve the no-wait job-shop scheduling problem , 1996 .

[3]  Jose M. Framiñan,et al.  Approximative procedures for no-wait job shop scheduling , 2003, Oper. Res. Lett..

[4]  Chelliah Sriskandarajah,et al.  Some no-wait shops scheduling problems: Complexity aspect , 1986 .

[5]  Chelliah Sriskandarajah,et al.  A Survey of Machine Scheduling Problems with Blocking and No-Wait in Process , 1996, Oper. Res..

[6]  Jason Chao-Hsien Pan,et al.  A hybrid genetic algorithm for no-wait job shop scheduling problems , 2009, Expert Syst. Appl..

[7]  Christoph J. Schuster No-wait Job Shop Scheduling: Tabu Search and Complexity of Subproblems , 2006, Math. Methods Oper. Res..

[8]  Christoph J. Schuster No-wait Job-Shop Scheduling: Komplexität und Local Search , 2003 .

[9]  Andreas Klinkert,et al.  Surgical case scheduling as a generalized job shop scheduling problem , 2008, Eur. J. Oper. Res..

[10]  Józef Grabowski,et al.  Sequencing of jobs in some production system , 2000, Eur. J. Oper. Res..

[11]  Dario Pacciarelli,et al.  Job-shop scheduling with blocking and no-wait constraints , 2002, Eur. J. Oper. Res..

[12]  F. Jabbarizadeh,et al.  Hybrid flexible flowshops with sequence-dependent setup times and machine availability constraints , 2009, Comput. Ind. Eng..

[13]  Ling Wang,et al.  An effective hybrid optimization strategy for job-shop scheduling problems , 2001, Comput. Oper. Res..

[14]  Mostafa Zandieh,et al.  A robust genetic algorithm for scheduling realistic hybrid flexible flow line problems , 2010, J. Intell. Manuf..

[15]  Gerard Sierksma,et al.  Complete Local Search with Memory , 2002, J. Heuristics.

[16]  Karen A. F. Copeland Design and Analysis of Experiments, 5th Ed. , 2001 .

[17]  Chandrasekharan Rajendran,et al.  A No-Wait Flowshop Scheduling Heuristic to Minimize Makespan , 1994 .

[18]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[19]  Nikhil Bansal,et al.  Minimizing Makespan in No-Wait Job Shops , 2005, Math. Oper. Res..

[20]  S. K. Goyal Job-shop sequencing problem with no wait in process , 1975 .

[21]  Chelliah Sriskandarajah,et al.  The complexity of scheduling jobs in repetitive manufacturing systems , 1993 .

[22]  J. David Schaffer,et al.  Proceedings of the third international conference on Genetic algorithms , 1989 .

[23]  C. V. Ramamoorthy,et al.  A Scheduling Problem , 1973 .

[24]  Han Hoogeveen,et al.  Scheduling multipurpose batch process industries with no-wait restrictions by simulated annealing , 2000, Eur. J. Oper. Res..

[25]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[26]  Xiaoping Li,et al.  Complete local search with limited memory algorithm for no-wait job shops to minimize makespan , 2009, Eur. J. Oper. Res..

[27]  Jose M. Framiñan,et al.  An enhanced timetabling procedure for the no-wait job shop problem: a complete local search approach , 2006, Comput. Oper. Res..

[28]  D. A. Wismer,et al.  Solution of the Flowshop-Scheduling Problem with No Intermediate Queues , 1972, Oper. Res..