Environmental Support to Amphibious Craft, Patrol Boats, and Coastal Ships: An Annotated Bibliography

Abstract : This annotated bibliography is a selection of citations to books, articles, documents, and data bases highlighting environmental conditions that impact the safety and performance of amphibious craft, patrol boats, and ships designed for coastal operations. Each citation is followed by a brief summary and evaluation of the source (i.e., the annotation). Most annotations will define the scope of the source, list significant cross references, and identify the relevant environmental conditions. There is no attempt to provide actual hypotheses, data, or graphics, especially concerning cited articles published in referred journals. The purpose of the annotation is to inform the reader of the relevance, accuracy and quality of the sources cited. Relevance relates to the citation's presentation of environmental conditions such as ambient air temperature, sea surface conditions (wave height, wave period, wave direction, spectral distribution), tidal regime, currents, wind conditions (direction, speed, and gusts), terrain (beach gradients and obstacles), and surf zone parameters type, surf zone width, longshore currents).

[1]  Gabriel Soriano,et al.  Doppler Spectra From a Two-Dimensional Ocean Surface at L-Band , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Christopher T. Evans Analysis of a Three-Beam Radar as an Instrument for Determining Ocean Wave Heights and Vector Slopes , 1994 .

[3]  Nathaniel G. Plant,et al.  Practical use of video imagery in nearshore oceanographic field studies , 1997 .

[4]  Diana J. M. Greenslade,et al.  The assimilation of ERS-2 significant wave height data in the Australian region , 2001 .

[5]  Charles M. Bachmann,et al.  A credit assignment approach to fusing classifiers of multiseason hyperspectral imagery , 2003, IEEE Trans. Geosci. Remote. Sens..

[6]  Jeremy David. Boyd Evaluation of ADCP Wave Measurements , 2006 .

[7]  Lawrence M. Lachman Surf Zone Modeling for an EFV Trainer for the USMC , 2006 .

[8]  Nelson Violante-Carvalho On the retrieval of significant wave heights from spaceborne Synthetic Aperture Radar (ERS-SAR) using the Max-Planck Institut (MPI) algorithm , 2005 .

[9]  Werner Alpers,et al.  Simultaneous measurements of the ocean wave-radar modulation transfer function at L, C, and X band , 1995 .

[10]  Wolfgang Rosenthal,et al.  Validation and intercomparisons of wave measurements and models during the EuroROSE experiments , 2003 .

[11]  L. Wyatt,et al.  An Instantaneous-Frequency Filtering Technique for High-Frequency Radar Oceanography , 2006, IEEE Journal of Oceanic Engineering.

[12]  C. R. Nichols,et al.  Camp Lejeune Integrated Observation Network , 2002, OCEANS '02 MTS/IEEE.

[13]  D. Lyzenga Passive remote sensing techniques for mapping water depth and bottom features. , 1978, Applied optics.

[14]  M. L. Schwartz,et al.  The world's coastline , 1985 .

[15]  Thomas L. Ainsworth,et al.  Bathymetric retrieval from manifold coordinate representations of hyperspectral imagery , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[16]  Todd K. Holland,et al.  Application of the linear dispersion relation with respect to depth inversion and remotely sensed imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[17]  Trijntje Valerie Downes,et al.  Interpretation of hyperspectral remote-sensing imagery by spectrum matching and look-up tables. , 2005, Applied optics.

[18]  Lev Shemer,et al.  An exact analytic representation of a regular or interferometric SAR image of ocean swell , 1999, IEEE Trans. Geosci. Remote. Sens..

[19]  S. Williams,et al.  The Distributed Integrated Ocean Prediction System (DIOPS) , 2002, OCEANS '02 MTS/IEEE.

[20]  Meric Srokosz,et al.  A Rotating Knife-beam Altimeter for Wide-swath Remote Sensing of Ocean: Wind and Waves , 2006, Sensors (Basel, Switzerland).

[21]  C. Reid Nichols,et al.  Encyclopedia of Marine Science , 2008 .

[22]  Joel T. Johnson,et al.  Further numerical studies of backscattering from time-evolving nonlinear sea surfaces , 2003, IEEE Trans. Geosci. Remote. Sens..

[23]  W. H. Michel,et al.  Sea Spectra Revisited , 1999 .

[24]  Michael Blumenstein,et al.  Objective Beach-State Classification From Optical Sensing of Cross-Shore Dissipation Profiles , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Atul K. Jain,et al.  Determination of ocean wave heights from synthetic aperture radar imagery , 1977 .

[26]  G. Farquharson,et al.  Comparison of optical and radar measurements of surf and swash zone velocity fields , 2003 .

[27]  Paul A. Hwang Wave number spectrum and mean square slope of intermediate‐scale ocean surface waves , 2005 .

[28]  Eric S. Kasischke,et al.  THE USE OF SYNTHETIC APERTURE RADAR IMAGERY TO DETECT HAZARDS TO NAVIGATION , 1984 .

[29]  W. Alpers,et al.  A theory of the imaging mechanism of underwater bottom topography by real and synthetic aperture radar , 1984 .

[30]  Edward J. Walsh,et al.  Ocean wave heights measured by a high resolution pulse-limited radar altimeter , 1978 .

[31]  C. Reid Nichols,et al.  Buoys Provide Real-Time Surf Data , 1998 .

[32]  Christine Gommenginger,et al.  The concept of a microwave radar with an asymmetric knifelike beam for the remote sensing of ocean waves , 2005 .

[33]  K. Walters,et al.  The Persian Gulf Region. A Climatological Study , 1990 .

[34]  Randy Showstack,et al.  World Ocean Database , 2009 .

[35]  Fred J. Tanis,et al.  Multispectral bathymetry using a simple physically based algorithm , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[36]  William Perrie,et al.  Remote Sensing of Ocean Waves by Polarimetric SAR , 2006 .

[37]  Johannes Schulz-Stellenfleth,et al.  Measurement of 2-D sea surface elevation fields using complex synthetic aperture radar data , 2004, IEEE Transactions on Geoscience and Remote Sensing.