Selective spectral filtration with nanoparticles for concentrating solar collectors

Abstract. A spectral fluid filter for potential use in hybrid photovoltaic/thermal concentrating solar collectors has been developed, targeting maximum absorption above and transmission below a desired wavelength. In this application, the temperature-dependent bandgap of the potential solar cell is used in the optimization of the filter. Dispersing a mix of colloidal nanoparticles in a heat transfer fluid is shown to absorb 86% of sub-bandgap insolation while absorbing only 18% above bandgap insolation. Transmission above bandgap light would be directly absorbed into the photovoltaic (PV) cell while absorbed photons transfer energy directly into the heat transfer fluid ultimately reducing the number of heat transfer steps. Placement of a filter in front of the PV cell is shown to decrease losses by converting an additional 2% of the total solar energy into thermal energy since it allows recollection of light reflected off the receiver.

[1]  Bill Marion,et al.  Outdoor performance of a thin-film gallium-arsenide photovoltaic module , 2013, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).

[2]  Kenji Adachi,et al.  Near Infrared Absorption of Tungsten Oxide Nanoparticle Dispersions , 2007 .

[3]  Drew DeJarnette,et al.  Far-field Fano resonance in nanoring lattices modeled from extracted, point dipole polarizability , 2014 .

[4]  A Paul Alivisatos,et al.  Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. , 2012, Journal of the American Chemical Society.

[5]  Todd Otanicar,et al.  Band-Gap Tuned Direct Absorption for a Hybrid Concentrating Solar Photovoltaic/Thermal System , 2011 .

[6]  Todd Otanicar,et al.  TRENDS AND OPPORTUNITIES IN DIRECT-ABSORPTION SOLAR THERMAL COLLECTORS , 2013 .

[7]  M. R. Jacobson,et al.  Liquid and thin-film filters for hybrid solar energy conversion systems , 1987 .

[8]  Robert A. Taylor,et al.  Nanofluid-based direct absorption solar collector , 2010 .

[9]  Masayuki Kanehara,et al.  Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region. , 2009, Journal of the American Chemical Society.

[10]  J. Randrianalisoa,et al.  Modified two-flux approximation for identification of radiative properties of absorbing and scattering media from directional-hemispherical measurements. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[11]  Robert A. Taylor,et al.  Feasibility of nanofluid-based optical filters. , 2013, Applied optics.

[12]  C. R. Chris Wang,et al.  Gold Nanorods: Electrochemical Synthesis and Optical Properties , 1997 .

[13]  Naomi J. Halas,et al.  Silver Nanoshells: Variations in Morphologies and Optical Properties , 2001 .

[14]  David L. Carroll,et al.  Synthesis and Characterization of Truncated Triangular Silver Nanoplates , 2002 .

[15]  P. Jain,et al.  Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. , 2006, The journal of physical chemistry. B.

[16]  S. L. Westcott,et al.  Infrared extinction properties of gold nanoshells , 1999 .

[17]  Mark T Swihart,et al.  Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials. , 2014, Chemical Society reviews.

[18]  A Paul Alivisatos,et al.  Localized surface plasmon resonances arising from free carriers in doped quantum dots. , 2011, Nature materials.

[19]  M. Haase,et al.  Wet-Chemical Synthesis of Doped Nanoparticles: Optical Properties of Oxygen-Deficient and Antimony-Doped Colloidal SnO2 , 2000 .

[20]  Elizabeth Thomsen,et al.  Spectral beam splitting for efficient conversion of solar energy - A review , 2013 .

[21]  K. O'Donnell,et al.  Temperature dependence of semiconductor band gaps , 1991 .

[22]  Drew DeJarnette,et al.  Attribution of Fano resonant features to plasmonic particle size, lattice constant, and dielectric wavenumber in square nanoparticle lattices , 2014 .

[23]  Todd Otanicar,et al.  Envisioning advanced solar electricity generation: Parametric studies of CPV/T systems with spectral filtering and high temperature PV , 2015 .

[24]  Feldmann,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002, Physical review letters.

[25]  Plasmonics in heavily-doped semiconductor nanocrystals , 2013, 1306.1077.

[26]  K. Adachi,et al.  Activation of plasmons and polarons in solar control cesium tungsten bronze and reduced tungsten oxide nanoparticles , 2012 .

[27]  R. Doremus Optical Properties of Small Silver Particles , 1965 .

[28]  G. Yeoh,et al.  A combined transient thermal model for laser hyperthermia of tumors with embedded gold nanoshells , 2011 .

[29]  M. El-Sayed,et al.  Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods , 1999 .

[30]  C. Haynes,et al.  Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays † , 2003 .

[31]  J. Golden,et al.  Optical properties of liquids for direct absorption solar thermal energy systems , 2009 .

[32]  Drew DeJarnette,et al.  Electron energy loss spectroscopy of gold nanoparticles on graphene , 2014 .

[33]  Drew DeJarnette,et al.  Plasmonic nanoparticle based spectral fluid filters for concentrating PV/T collectors , 2014, Optics & Photonics - Solar Energy + Applications.

[34]  D. DeJarnette,et al.  Modulation of plasmonic Fano resonance by the shape of the nanoparticles in ordered arrays , 2013 .

[35]  Vernie Everett,et al.  Experimental testing of SiNx/SiO2 thin film filters for a concentrating solar hybrid PV/T collector , 2014 .

[36]  Drew DeJarnette,et al.  Geometric effects on far-field coupling between multipoles of nanoparticles in square arrays , 2012 .

[37]  Robert A. Taylor,et al.  Nanofluid-based optical filter optimization for PV/T systems , 2012, Light: Science & Applications.

[38]  C. Ohm,et al.  Enhanced Thermal Stability of Gold and Silver Nanorods by Thin Surface Layers , 2007 .

[39]  U. Kreibig,et al.  Electronic properties of small silver particles: the optical constants and their temperature dependence , 1974 .

[40]  V. Everett,et al.  Spectral characterisation and long-term performance analysis of various commercial Heat Transfer Fluids (HTF) as Direct-Absorption Filters for CPV-T beam-splitting applications , 2014 .

[41]  Naomi J. Halas,et al.  Nanoengineering of optical resonances , 1998 .

[42]  Wei-Cheng Lai,et al.  Electrochemical Synthesis and Optical Properties of Gold Nanorods , 2001 .

[43]  Todd Otanicar,et al.  Photovoltaic/thermal system performance utilizing thin film and nanoparticle dispersion based optical filters , 2013 .

[44]  Wojciech Lipiński,et al.  Approximate analytical solution to normal emittance of semi-transparent layer of an absorbing, scattering, and refracting medium , 2011 .

[45]  Stephan Link,et al.  Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles , 1999 .