Genetic meta-analysis of levodopa induced dyskinesia in Parkinson’s disease

[1]  Houeto Jean-Luc [Parkinson's disease]. , 2022, La Revue du praticien.

[2]  V. Di Liberto,et al.  Low-Density Lipoprotein Receptor-Related Protein 8 at the Crossroad between Cancer and Neurodegeneration , 2022, International journal of molecular sciences.

[3]  L. Forsgren,et al.  GBA and APOE Impact Cognitive Decline in Parkinson’s Disease: A 10-Year Population-Based Study , 2022, Movement disorders : official journal of the Movement Disorder Society.

[4]  T. Esposito,et al.  Exome-wide association study of levodopa-induced dyskinesia in Parkinson’s disease , 2021, Scientific Reports.

[5]  Sina A. Gharib,et al.  Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression , 2021, Nature Genetics.

[6]  Yang Liu,et al.  Association of COMT rs4680 and MAO-B rs1799836 polymorphisms with levodopa-induced dyskinesia in Parkinson’s disease—a meta-analysis , 2021, Neurological Sciences.

[7]  Tom R. Gaunt,et al.  Brain expression quantitative trait locus and network 1 analysis reveals downstream effects and putative 2 drivers for brain-related diseases , 2021 .

[8]  A. Hicks,et al.  Genetic variants in levodopa-induced dyskinesia (LID): A systematic review and meta-analysis. , 2021, Parkinsonism & related disorders.

[9]  GP2: The Global Parkinson's Genetics Program , 2021, Movement disorders : official journal of the Movement Disorder Society.

[10]  Sonja W. Scholz,et al.  Accelerating Medicines Partnership: Parkinson's Disease. Genetic Resource , 2020, medRxiv.

[11]  Towfique Raj,et al.  echolocatoR: an automated end-to-end statistical and functional genomic fine-mapping pipeline , 2020, bioRxiv.

[12]  R. Uitti,et al.  Association of MAPT subhaplotypes with clinical and demographic features in Parkinson’s disease , 2020, Annals of clinical and translational neurology.

[13]  J. Jankovic,et al.  Parkinson’s disease: etiopathogenesis and treatment , 2020, Journal of Neurology, Neurosurgery, and Psychiatry.

[14]  T. Anderson,et al.  Common Variants Coregulate Expression of GBA and Modifier Genes to Delay Parkinson's Disease Onset , 2020, Movement disorders : official journal of the Movement Disorder Society.

[15]  James B. Brewer,et al.  Brain cell type–specific enhancer–promoter interactome maps and disease-risk association , 2019, Science.

[16]  Matti Pirinen,et al.  Functionally-informed fine-mapping and polygenic localization of complex trait heritability , 2019, Nature Genetics.

[17]  C. Carroll,et al.  Simvastatin as a neuroprotective treatment for Parkinson’s disease (PD STAT): protocol for a double-blind, randomised, placebo-controlled futility study , 2019, BMJ Open.

[18]  A. Lang,et al.  Randomized Delayed‐Start Trial of Levodopa in Parkinson's Disease , 2019, The New England journal of medicine.

[19]  Matthew Stephens,et al.  A simple new approach to variable selection in regression, with application to genetic fine-mapping , 2018, bioRxiv.

[20]  P. Calabresi,et al.  Levodopa‐induced dyskinesia in Parkinson disease: Current and evolving concepts , 2018, Annals of neurology.

[21]  P. Donnelly,et al.  The UK Biobank resource with deep phenotyping and genomic data , 2018, Nature.

[22]  D. Truong,et al.  Levodopa-induced dyskinesia: clinical features, incidence, and risk factors , 2018, Journal of Neural Transmission.

[23]  M. Cheetham,et al.  DNAJ Proteins in neurodegeneration: essential and protective factors , 2018, Philosophical Transactions of the Royal Society B: Biological Sciences.

[24]  J. Sinsheimer,et al.  Dopamine receptors and BDNF-haplotypes predict dyskinesia in Parkinson's disease. , 2017, Parkinsonism & related disorders.

[25]  N. Hiroi,et al.  Human COMT over-expression confers a heightened susceptibility to dyskinesia in mice , 2017, Neurobiology of Disease.

[26]  Alan M. Kwong,et al.  Next-generation genotype imputation service and methods , 2016, Nature Genetics.

[27]  D. Vaillancourt,et al.  The NINDS Parkinson's disease biomarkers program , 2016, Movement disorders : official journal of the Movement Disorder Society.

[28]  R. Barker,et al.  Tracking Parkinson’s: Study Design and Baseline Patient Data , 2015, Journal of Parkinson's disease.

[29]  Matti Pirinen,et al.  FINEMAP: efficient variable selection using summary data from genome-wide association studies , 2015, bioRxiv.

[30]  Joris M. Mooij,et al.  MAGMA: Generalized Gene-Set Analysis of GWAS Data , 2015, PLoS Comput. Biol..

[31]  Marianna Amboni,et al.  The modern pre-levodopa era of Parkinson’s disease: insights into motor complications from sub-Saharan Africa , 2014, Brain : a journal of neurology.

[32]  M. Farrer,et al.  Genetics and genomics of Parkinson’s disease , 2014, Genome Medicine.

[33]  E. Storey,et al.  Influence of Single Nucleotide Polymorphisms in COMT, MAO-A and BDNF Genes on Dyskinesias and Levodopa Use in Parkinson's Disease , 2013, Neurodegenerative Diseases.

[34]  A. Rajput Factors Predictive of the Development of Levodopa-Induced Dyskinesia and Wearing-Off in Parkinson's Disease , 2013, Movement disorders : official journal of the Movement Disorder Society.

[35]  Murat Emre,et al.  Factors predictive of the development of Levodopa‐induced dyskinesia and wearing‐off in Parkinson's disease , 2013, Movement disorders : official journal of the Movement Disorder Society.

[36]  Raymond K. Auerbach,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[37]  G. Tseng,et al.  Comprehensive literature review and statistical considerations for microarray meta-analysis , 2012, Nucleic acids research.

[38]  J. Marinus,et al.  Catechol‐O‐methyltransferase Val158Met and the risk of dyskinesias in Parkinson's disease , 2012, Movement disorders : official journal of the Movement Disorder Society.

[39]  A. Singleton,et al.  The Parkinson Progression Marker Initiative (PPMI) , 2011, Progress in Neurobiology.

[40]  E. Weeber,et al.  Similarities and differences in structure, expression, and functions of VLDLR and ApoER2 , 2011, Molecular Neurodegeneration.

[41]  P. Visscher,et al.  GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.

[42]  G. Linazasoro,et al.  Classifying risk factors for dyskinesia in Parkinson's disease. , 2010, Parkinsonism & related disorders.

[43]  G. Glass,et al.  Age of Parkinson's disease onset as a predictor for the development of dyskinesia , 2010, Movement Disorders.

[44]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[45]  R. Moratalla,et al.  Genetic Inactivation of Dopamine D1 but Not D2 Receptors Inhibits L-DOPA–Induced Dyskinesia and Histone Activation , 2009, Biological Psychiatry.

[46]  Y. Agid,et al.  A multidisciplinary study of patients with early-onset PD with and without parkin mutations , 2009, Neurology.

[47]  Jon Wakefield,et al.  Bayes factors for genome‐wide association studies: comparison with P‐values , 2009, Genetic epidemiology.

[48]  J. Nutt,et al.  The Unified Dyskinesia Rating Scale: Presentation and clinimetric profile , 2008, Movement disorders : official journal of the Movement Disorder Society.

[49]  D. Weinberger,et al.  BDNF val66met influences time to onset of levodopa induced dyskinesia in Parkinson’s disease , 2008, Journal of Neurology, Neurosurgery, and Psychiatry.

[50]  G. Opala,et al.  The association of functional catechol-O-methyltransferase haplotypes with risk of Parkinson's disease, levodopa treatment response, and complications , 2008, Pharmacogenetics and genomics.

[51]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[52]  C. Tanner,et al.  Levodopa and the progression of Parkinson's disease. , 2004, The New England journal of medicine.

[53]  Toshihiro Tanaka The International HapMap Project , 2003, Nature.

[54]  Nicholas W Wood,et al.  Parkin disease: a phenotypic study of a large case series. , 2003, Brain : a journal of neurology.

[55]  J. Houwing-Duistermaat,et al.  Park7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome 1p36. , 2001, American journal of human genetics.

[56]  A. Quattrone,et al.  Dopamine D2 receptor gene polymorphism and the risk of levodopa-induced dyskinesias in PD. , 1999, Neurology.

[57]  Joachim Herz,et al.  Direct Binding of Reelin to VLDL Receptor and ApoE Receptor 2 Induces Tyrosine Phosphorylation of Disabled-1 and Modulates Tau Phosphorylation , 1999, Neuron.

[58]  N Risch,et al.  The Future of Genetic Studies of Complex Human Diseases , 1996, Science.

[59]  W. Gibb,et al.  The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease. , 1988, Journal of neurology, neurosurgery, and psychiatry.

[60]  M. Hamilton,et al.  The Leeds Scales for the Self-Assessment of Anxiety and Depression , 1976, British Journal of Psychiatry.

[61]  Tokuo T. Yamamoto,et al.  ApoER2 Controls Not Only Neuronal Migration in the Intermediate Zone But Also Termination of Migration in the Developing Cerebral Cortex , 2018, Cerebral cortex.

[62]  A. Sun,et al.  Identifying distinct candidate genes for early Parkinson's disease by analysis of gene expression in whole blood. , 2014, Neuro endocrinology letters.

[63]  Melissa C. Greven,et al.  An integrated encyclopedia of DNA elements in the human genome , 2014 .

[64]  A. Schrag,et al.  Levodopa-induced-dyskinesias clinical features, incidence, risk factors, management and impact on quality of life. , 2012, Journal of Parkinson's disease.

[65]  Alejandro Erickson,et al.  Input , 2002, SLA Applied.

[66]  C. Spielberger,et al.  STAI manual for the State-trait anxiety inventory ("self-evaluation questionnaire") , 1970 .