Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration.

We present a technique based on the selective liquid infiltration of photonic crystal (PhC) waveguides to produce very small dispersion slow light over a substantial bandwidth. We numerically demonstrate that this approach allows one to control the group velocity (from c/20 to c/110) from a single PhC waveguide design, simply by choosing the index of the liquid to infiltrate. In addition, we show that this method is tolerant to deviations in the PhC parameters such as the hole size, which relaxes the constraint on the PhC fabrication accuracy as compared to previous structural-based methods for slow light dispersion engineering.

[1]  Romuald Houdré,et al.  Temperature tuning of the optical properties of planar photonic crystal microcavities , 2004 .

[2]  Manfred Eich,et al.  Zero dispersion at small group velocities in photonic crystal waveguides , 2004 .

[3]  Kurt Busch,et al.  Tunable photonic crystal circuits: concepts and designs based on single-pore infiltration. , 2004, Optics letters.

[4]  Demetri Psaltis,et al.  Liquid-Crystal Electric Tuning of a Photonic Crystal Laser , 2004 .

[5]  D. Psaltis,et al.  Developing optofluidic technology through the fusion of microfluidics and optics , 2006, Nature.

[6]  Yoshimasa Sugimoto,et al.  The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides. , 2006 .

[7]  Benjamin J Eggleton,et al.  Reconfigurable microfluidic photonic crystal slab cavities. , 2008, Optics express.

[8]  Jacob Fage-Pedersen,et al.  Photonic crystal waveguides with semi-slow light and tailored dispersion properties. , 2006, Optics express.

[9]  Christelle Monat,et al.  Integrated optofluidics: A new river of light , 2007 .

[10]  A Säynätjoki,et al.  Dispersion engineering of photonic crystal waveguides with ring-shaped holes. , 2007, Optics express.

[11]  A. Fiore,et al.  Local infiltration of planar photonic crystals with UV-curable polymers , 2008 .

[12]  Peter Ingo Borel,et al.  Slow Light in Photonic Crystal Waveguides , 2018, Slow Light.

[13]  L. Kuipers,et al.  The effect of higher order dispersion on slow light propagation in photonic crystal waveguides , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[14]  T. Krauss,et al.  Systematic design of flat band slow light in photonic crystal waveguides. , 2008, Optics express.

[15]  Stefan L. Schweizer,et al.  Rewritable photonic circuits , 2006 .

[16]  T. Krauss Why do we need slow light , 2008 .

[17]  Emmanuel Drouard,et al.  Directional channel-drop filter based on a slow Bloch mode photonic crystal waveguide section. , 2005, Optics express.

[18]  P Lalanne,et al.  Coupling into slow-mode photonic crystal waveguides. , 2007, Optics letters.

[19]  Masanori Ozaki,et al.  Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal , 1999 .

[20]  D. Citrin,et al.  Reconfigurable multimode photonic-crystal waveguides. , 2008, Optics express.

[21]  Toshihiko Baba,et al.  Slow light in photonic crystals , 2008 .

[22]  Kurt Busch,et al.  Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum , 1999 .

[23]  Steven G. Johnson,et al.  Photonic-crystal slow-light enhancement of nonlinear phase sensitivity , 2002 .

[24]  Harald Giessen,et al.  Microfluidic photonic crystal double heterostructures , 2007 .

[25]  Benjamin J Eggleton,et al.  High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures. , 2008, Optics letters.

[26]  T. Krauss,et al.  Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth. , 2007, Optics express.

[27]  D. Psaltis,et al.  Nanofluidic tuning of photonic crystal circuits , 2006 .

[28]  Toshihiko Baba,et al.  Low-group-velocity and low-dispersion slow light in photonic crystal waveguides. , 2007, Optics letters.