STATE OF THE ART SERIES New Tools, Series editor: Wing-Wai Yew NUMBER 3 IN THE SERIES Enabling biomarkers for tuberculosis control

[1]  Claude Villard,et al.  Advances in top-down proteomics for disease biomarker discovery. , 2011, Journal of proteomics.

[2]  Bo-Young Jeon,et al.  (1)H NMR-based metabolomic profiling in mice infected with Mycobacterium tuberculosis. , 2011, Journal of proteome research.

[3]  D. Kell,et al.  Metabolomics by numbers: acquiring and understanding global metabolite data. , 2004, Trends in biotechnology.

[4]  Guowang Xu,et al.  A GC-based metabonomics investigation of type 2 diabetes by organic acids metabolic profile. , 2007, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[5]  Graham Bothamley,et al.  Breath biomarkers of active pulmonary tuberculosis. , 2010, Tuberculosis.

[6]  G. D. de Souza,et al.  A proteomic view of mycobacteria , 2011, Proteomics.

[7]  Ignacio González,et al.  integrOmics: an R package to unravel relationships between two omics datasets , 2009, Bioinform..

[8]  A. Morillon,et al.  Noncoding RNAs in gene regulation , 2011, Wiley interdisciplinary reviews. Systems biology and medicine.

[9]  S. Eckhardt,et al.  Clinical Applications of Metabolomics in Oncology: A Review , 2009, Clinical Cancer Research.

[10]  Fuhong He,et al.  Modeling Transcriptome Based on Transcript-Sampling Data , 2008, PloS one.

[11]  Paul D van Helden,et al.  Gene-expression patterns in whole blood identify subjects at risk for recurrent tuberculosis. , 2007, The Journal of infectious diseases.

[12]  Kadambini Tripathy,et al.  Metabolomics: The Future of Systems Biology , 2011 .

[13]  M. Herbster,et al.  Identification of diagnostic markers for tuberculosis by proteomic fingerprinting of serum , 2006, The Lancet.

[14]  D. Venter,et al.  Chips with everything: DNA microarrays in infectious diseases. , 2004, The Lancet. Infectious diseases.

[15]  Bart Weetjens,et al.  The volatiles of pathogenic and nonpathogenic mycobacteria and related bacteria , 2012, Beilstein journal of organic chemistry.

[16]  R. Cox,et al.  A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. , 2007, Physiological genomics.

[17]  Yurong Fu,et al.  Circulating MicroRNAs in Patients with Active Pulmonary Tuberculosis , 2011, Journal of Clinical Microbiology.

[18]  Lutgarde M. C. Buydens,et al.  Fusion of metabolomics and proteomics data for biomarkers discovery: case study on the experimental autoimmune encephalomyelitis , 2011, BMC Bioinformatics.

[19]  Joshua M. Stuart,et al.  A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules , 2003, Science.

[20]  Hannah P. Gideon,et al.  Latent tuberculosis: what the host “sees”? , 2011, Immunologic research.

[21]  D. Moazed Small RNAs in transcriptional gene silencing and genome defence , 2009, Nature.

[22]  David S. Wishart,et al.  HMDB: a knowledgebase for the human metabolome , 2008, Nucleic Acids Res..

[23]  Ji Yue,et al.  Serum Protein Profiling of Smear-Positive and Smear-Negative Pulmonary Tuberculosis Using SELDI-TOF Mass Spectrometry , 2009, Lung.

[24]  Jay D Keasling,et al.  Quantitative proteomic profiling of host-pathogen interactions: the macrophage response to Mycobacterium tuberculosis lipids. , 2009, Journal of proteome research.

[25]  Kelly Morris,et al.  WHO recommends against inaccurate tuberculosis tests , 2011, The Lancet.

[26]  Qian Gao,et al.  Comparative miRNA Expression Profiles in Individuals with Latent and Active Tuberculosis , 2011, PloS one.

[27]  F. Pontén,et al.  The Human Protein Atlas as a proteomic resource for biomarker discovery , 2011, Journal of internal medicine.

[28]  Minggui Lin,et al.  Establishing a serologic decision tree model of extrapulmonary tuberculosis by MALDI-TOF MS analysis. , 2011, Diagnostic microbiology and infectious disease.

[29]  C. Wingren,et al.  Transferring proteomic discoveries into clinical practice , 2009, Expert review of proteomics.

[30]  S. H. Kaufmann,et al.  Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens , 1999, Molecular microbiology.

[31]  J. Mbwambo,et al.  Sputum smear negative pulmonary tuberculosis: sensitivity and specificity of diagnostic algorithm , 2011, BMC Research Notes.

[32]  Albert J. Fornace,et al.  Metabolomic Analysis in Severe Childhood Pneumonia in The Gambia, West Africa: Findings from a Pilot Study , 2010, PloS one.

[33]  Ramón Díaz-Uriarte,et al.  Gene selection and classification of microarray data using random forest , 2006, BMC Bioinformatics.

[34]  Philip L Felgner,et al.  Dynamic antibody responses to the Mycobacterium tuberculosis proteome , 2010, Proceedings of the National Academy of Sciences.

[35]  Atul J. Butte,et al.  Ten Years of Pathway Analysis: Current Approaches and Outstanding Challenges , 2012, PLoS Comput. Biol..

[36]  Ugur Sahin,et al.  RNA-Seq Atlas - a reference database for gene expression profiling in normal tissue by next-generation sequencing , 2012, Bioinform..

[37]  John P A Ioannidis,et al.  Improving Validation Practices in “Omics” Research , 2011, Science.

[38]  Xinjing Wang,et al.  Modulation of T cell cytokine production by miR-144* with elevated expression in patients with pulmonary tuberculosis. , 2011, Molecular immunology.

[39]  D Repsilber,et al.  Human gene expression profiles of susceptibility and resistance in tuberculosis , 2011, Genes and Immunity.

[40]  Stefan H. E. Kaufmann,et al.  Diagnosis of Tuberculosis by Trained African Giant Pouched Rats and Confounding Impact of Pathogens and Microflora of the Respiratory Tract , 2011, Journal of Clinical Microbiology.

[41]  Gerhard Walzl,et al.  Host markers in Quantiferon supernatants differentiate active TB from latent TB infection: preliminary report , 2009, BMC pulmonary medicine.

[42]  C. Wingren,et al.  Recombinant antibodies for the generation of antibody arrays. , 2011, Methods in molecular biology.

[43]  Xinhua Weng,et al.  Analysis of microRNA expression profiling identifies miR-155 and miR-155* as potential diagnostic markers for active tuberculosis: a preliminary study. , 2012, Human immunology.

[44]  Alimuddin Zumla,et al.  Immunological biomarkers of tuberculosis , 2011, Nature Reviews Immunology.

[45]  Robert Gentleman,et al.  Bioconductor Case Studies , 2008 .

[46]  Monica L. Mo,et al.  Global reconstruction of the human metabolic network based on genomic and bibliomic data , 2007, Proceedings of the National Academy of Sciences.

[47]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[48]  S. Bencharit,et al.  Defining salivary biomarkers using mass spectrometry-based proteomics: a systematic review. , 2011, Omics : a journal of integrative biology.

[49]  N. Magan,et al.  Electronic noses and disease diagnostics , 2004, Nature Reviews Microbiology.

[50]  Christopher D. Rithner,et al.  Metabolic profiling of lung granuloma in Mycobacterium tuberculosis infected guinea pigs: ex vivo 1H magic angle spinning NMR studies. , 2011, Journal of proteome research.

[51]  Dirk Repsilber,et al.  Functional Correlations of Pathogenesis-Driven Gene Expression Signatures in Tuberculosis , 2011, PloS one.

[52]  William Stafford Noble,et al.  Computational and Statistical Analysis of Protein Mass Spectrometry Data , 2012, PLoS Comput. Biol..

[53]  Shankar Subramaniam,et al.  Gene-expression measurement: variance-modeling considerations for robust data analysis , 2012, Nature Immunology.

[54]  Stefan H. E. Kaufmann,et al.  Common patterns and disease-related signatures in tuberculosis and sarcoidosis , 2012, Proceedings of the National Academy of Sciences.

[55]  Virginia Pascual,et al.  A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus. , 2008, Immunity.

[56]  V. Pascual,et al.  Assessing the human immune system through blood transcriptomics , 2010, BMC Biology.

[57]  K. Dobos,et al.  Prospective on Mycobacterium tuberculosis proteomics. , 2012, Journal of proteome research.

[58]  R. Spielman,et al.  expression reveals gene interactions and functions Coexpression network based on natural variation in human gene Material , 2009 .

[59]  Dirk Repsilber,et al.  Candidate biomarkers for discrimination between infection and disease caused by Mycobacterium tuberculosis , 2007, Journal of Molecular Medicine.

[60]  Robert L J Graham,et al.  Proteomics in the microbial sciences , 2011, Bioengineered bugs.

[61]  Kengo Kinoshita,et al.  COXPRESdb: a database to compare gene coexpression in seven model animals , 2010, Nucleic Acids Res..

[62]  Philippe Glaziou,et al.  Tuberculosis control and elimination 2010–50: cure, care, and social development , 2010, The Lancet.

[63]  Dirk Repsilber,et al.  Novel strategies to identify biomarkers in tuberculosis , 2008, Biological chemistry.

[64]  T. Terasaki,et al.  Quantitative targeted absolute proteomics-based ADME research as a new path to drug discovery and development: methodology, advantages, strategy, and prospects. , 2011, Journal of pharmaceutical sciences.

[65]  Eduardo Gotuzzo,et al.  Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: a multicentre implementation study , 2011, The Lancet.

[66]  Zhining Wang,et al.  Transcriptional responses of host peripheral blood cells to tuberculosis infection. , 2011, Tuberculosis.

[67]  Qingbo Li,et al.  A systems biology approach to study the phagosomal proteome modulated by mycobacterial infections. , 2009, International journal of clinical and experimental medicine.

[68]  Thomas J. Wang,et al.  The search for new cardiovascular biomarkers , 2008, Nature.

[69]  Eric Chun Yong Chan,et al.  Use of urine volatile organic compounds to discriminate tuberculosis patients from healthy subjects. , 2011, Analytical chemistry.

[70]  Matthias Wilmanns,et al.  The progress made in determining the Mycobacterium tuberculosis structural proteome , 2011, Proteomics.

[71]  Peer Bork,et al.  KEGG Atlas mapping for global analysis of metabolic pathways , 2008, Nucleic Acids Res..

[72]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[73]  I. Marinou,et al.  Cepheid GeneXpert MTB/RIF Assay for Mycobacterium tuberculosis Detection and Rifampin Resistance Identification in Patients with Substantial Clinical Indications of Tuberculosis and Smear-Negative Microscopy Results , 2011, Journal of Clinical Microbiology.