Periodicity in a nonlinear discrete predator–prey system with state dependent delays

[1]  Jinde Cao,et al.  Positive Periodic Solutions of a Class of Non–autonomous Single Species Population Model with Delays and Feedback Control , 2005 .

[2]  Fengde Chen On a nonlinear nonautonomous predator-prey model with diffusion and distributed delay , 2005 .

[3]  Jinlin Shi,et al.  Periodicity in a Nonlinear Predator-prey System with State Dependent Delays , 2005 .

[4]  Xiaoxin Chen,et al.  Sufficient conditions for the existence positive periodic solutions of a class of neutral delay models with feedback control , 2004, Appl. Math. Comput..

[5]  Jinlin Shi,et al.  Periodicity in a logistic type system with several delays , 2004 .

[6]  Jiandong Zhao,et al.  The qualitative analysis of N-species nonlinear prey-competition systems , 2004, Appl. Math. Comput..

[7]  Jinlin Shi,et al.  Periodicity in a food-limited population model with toxicants and state dependent delays☆ , 2003 .

[8]  M. Fan,et al.  Periodic Solutions for a Class of Discrete Time Competition Systems , 2002 .

[9]  Ke Wang,et al.  Periodic solutions of a discrete time nonautonomous ratio-dependent predator-prey system , 2002 .

[10]  M. Fan,et al.  Periodic Solutions of Nonautonomous Discrete Predator-Prey System of Lotka-Volterra Type , 2002 .

[11]  Guihong Fan Existence of positive periodic solution for a single species model with state dependent delay , 2002 .

[12]  Yang Kuang,et al.  Periodic Solutions of Periodic Delay Lotka–Volterra Equations and Systems☆ , 2001 .

[13]  Ke Wang,et al.  Global periodic solutions of a generalized n-species Gilpin-Ayala competition model☆ , 2000 .

[14]  Yongkun Li,et al.  Periodic Solutions for Delay Lotka–Volterra Competition Systems , 2000 .

[15]  M. Fan,et al.  GLOBAL EXISTENCE OF POSITIVE PERIODIC SOLUTION OF PREDATOR-PREY SYSTEM WITH DEVIATING ARGUMENTS , 2000 .

[16]  Li Yongkun,et al.  PERIODIC SOLUTIONS OF A PERIODIC DELAY PREDATOR-PREY SYSTEM , 1999 .

[17]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[18]  H. I. Freedman,et al.  Analysis of a model representing stage-structured population growth with state-dependent time delay , 1992 .

[19]  Jianhong Wu,et al.  Periodic solutions of single-species models with periodic delay , 1992 .

[20]  H. I. Freedman Deterministic mathematical models in population ecology , 1982 .

[21]  B. Goh,et al.  Management and analysis of biological populations , 1982 .

[22]  R. Gaines,et al.  Coincidence Degree and Nonlinear Differential Equations , 1977 .

[23]  Jim M Cushing,et al.  Periodic Time-Dependent Predator-Prey Systems , 1977 .