Quantum Computation and Shor's Factoring Algorithm

Current technology is beginning to allow us to manipulate rather than just observe individual quantum phenomena. This opens up the possibility of exploiting quantum effects to perform computations beyond the scope of any classical computer. Recently Peter Shor discovered an efficient algorithm for factoring whole numbers, which uses characteristically quantum effects. The algorithm illustrates the potential power of quantum computation, as there is no known efficient classical method for solving this problem. The authors give an exposition of Shor's algorithm together with an introduction to quantum computation and complexity theory. They discuss experiments that may contribute to its practical implementation. [S0034-6861(96)00303-0]

[1]  A. Ekert,et al.  Quantum computers and dissipation , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[2]  Barenco,et al.  Quantum networks for elementary arithmetic operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[3]  Hood,et al.  Measurement of conditional phase shifts for quantum logic. , 1995, Physical review letters.

[4]  King,et al.  Demonstration of a fundamental quantum logic gate. , 1995, Physical review letters.

[5]  I. Chuang,et al.  Quantum Error Correction by Coding , 1995, quant-ph/9511003.

[6]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[7]  S. Lloyd Quantum-Mechanical Computers , 1995 .

[8]  Lloyd,et al.  Almost any quantum logic gate is universal. , 1995, Physical review letters.

[9]  A. Barenco A universal two-bit gate for quantum computation , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[10]  D. Deutsch,et al.  Universality in quantum computation , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[11]  Chuang,et al.  Simple quantum computer. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[12]  Sleator,et al.  Realizable Universal Quantum Logic Gates. , 1995, Physical review letters.

[13]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[14]  Barenco,et al.  Conditional Quantum Dynamics and Logic Gates. , 1995, Physical review letters.

[15]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[16]  Morgenstern,et al.  Precision measurement of the proton spin structure function gp1. , 1995, Physical review letters.

[17]  DiVincenzo,et al.  Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[18]  Unruh,et al.  Maintaining coherence in quantum computers. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[19]  K. Leutwyler Kay Redfield Jamison. Coming through madness. , 1995, Scientific American.

[20]  D. Coppersmith An approximate Fourier transform useful in quantum factoring , 2002, quant-ph/0201067.

[21]  S. Lloyd Necessary and Sufficient Conditions for Quantum Computation , 1994 .

[22]  Davidovich,et al.  Teleportation of an atomic state between two cavities using nonlocal microwave fields. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[23]  J. Raimond,et al.  From Lamb shift to light shifts: Vacuum and subphoton cavity fields measured by atomic phase sensitive detection. , 1994, Physical review letters.

[24]  Kimble,et al.  Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence. , 1993, Physical review letters.

[25]  S Lloyd,et al.  A Potentially Realizable Quantum Computer , 1993, Science.

[26]  Quantum-mechanical computers and uncomputability. , 1993, Physical review letters.

[27]  G. Brassard,et al.  Oracle Quantum Computing , 1992, Workshop on Physics and Computation.

[28]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[29]  Rolf Landauer,et al.  Information is Physical , 1991, Workshop on Physics and Computation.

[30]  R. Jozsa Characterizing classes of functions computable by quantum parallelism , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[31]  W. Zurek The Environment, Decoherence and the Transition from Quantum to Classical , 1991 .

[32]  P. Knight Laser Spectroscopy IX , 1990 .

[33]  W. H. Zurek Complexity, Entropy and the Physics of Information , 1990 .

[34]  Michael Barr,et al.  The Emperor's New Mind , 1989 .

[35]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[36]  Charles H. Bennett Time/Space Trade-Offs for Reversible Computation , 1989, SIAM J. Comput..

[37]  Paul E. Dunne,et al.  The Complexity of Boolean Networks , 1988 .

[38]  Dominic J. A. Welsh,et al.  Codes and cryptography , 1988 .

[39]  Teich,et al.  Structural basis of multistationary quantum systems. II. Effective few-particle dynamics. , 1988, Physical review. B, Condensed matter.

[40]  R. Landauer Computation: A Fundamental Physical View , 1987 .

[41]  Robert D. Silverman The multiple polynomial quadratic sieve , 1987 .

[42]  Paul Benioff,et al.  Quantum Mechanical Hamiltonian Models of Computers a , 1986 .

[43]  J. Hecht,et al.  The Laser Guidebook , 1986 .

[44]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[45]  H. Riesel Prime numbers and computer methods for factorization , 1985 .

[46]  M. Schroeder Number Theory in Science and Communication , 1984 .

[47]  R. Feynman Simulating physics with computers , 1999 .

[48]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[49]  M. Rabin Probabilistic algorithm for testing primality , 1980 .

[50]  P. Benioff The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines , 1980 .

[51]  Adi Shamir,et al.  On Digital Signatures and Public-Key Cryptosystems. , 1977 .

[52]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[53]  Donald Ervin Knuth,et al.  The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .

[54]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[55]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .