Screening of an FDA‐approved compound library identifies levosimendan as a novel anti‐HIV‐1 agent that inhibits viral transcription

[1]  Shuai Liu,et al.  A Novel Bromodomain Inhibitor Reverses HIV-1 Latency through Specific Binding with BRD4 to Promote Tat and P-TEFb Association , 2017, Front. Microbiol..

[2]  G. Fouda,et al.  Lessons learned from human HIV vaccine trials , 2017, Current opinion in HIV and AIDS.

[3]  C. Van Lint,et al.  HIV Latency: Should We Shock or Lock? , 2017, Trends in immunology.

[4]  Doreen Kamori,et al.  HIV-1 Tat and Viral Latency: What We Can Learn from Naturally Occurring Sequence Variations , 2017, Front. Microbiol..

[5]  B. Lacombe,et al.  Specific Inhibition of HIV Infection by the Action of Spironolactone in T Cells , 2016, Journal of Virology.

[6]  J. Papp,et al.  Calcium sensitizers: What have we learned over the last 25 years? , 2016, International journal of cardiology.

[7]  M. Okada,et al.  Levosimendan inhibits interleukin-1β-induced apoptosis through activation of Akt and inhibition of inducible nitric oxide synthase in rat cardiac fibroblasts. , 2015, European journal of pharmacology.

[8]  C. Gaudio,et al.  Safety profile of mineralocorticoid receptor antagonists: Spironolactone and eplerenone. , 2015, International journal of cardiology.

[9]  S. Elledge,et al.  FACT Proteins, SUPT16H and SSRP1, Are Transcriptional Suppressors of HIV-1 and HTLV-1 That Facilitate Viral Latency* , 2015, The Journal of Biological Chemistry.

[10]  L. Trautmann,et al.  The Tat Inhibitor Didehydro-Cortistatin A Prevents HIV-1 Reactivation from Latency , 2015, mBio.

[11]  Hongyu Miao,et al.  IFI44 suppresses HIV-1 LTR promoter activity and facilitates its latency. , 2015, Virology.

[12]  Arsène Burny,et al.  An In-Depth Comparison of Latency-Reversing Agent Combinations in Various In Vitro and Ex Vivo HIV-1 Latency Models Identified Bryostatin-1+JQ1 and Ingenol-B+JQ1 to Potently Reactivate Viral Gene Expression , 2015, PLoS pathogens.

[13]  Daniel I. S. Rosenbloom,et al.  Ex vivo analysis identifies effective HIV-1 latency-reversing drug combinations. , 2015, The Journal of clinical investigation.

[14]  S. Valente,et al.  Targeting HIV transcription: the quest for a functional cure. , 2015, Current topics in microbiology and immunology.

[15]  Gaurav D. Gaiha,et al.  Comprehensive Identification of Host Modulators of HIV-1 Replication using Multiple Orthologous RNAi Reagents , 2014, Cell reports.

[16]  W. Greene,et al.  An Integrated Overview of HIV-1 Latency , 2013, Cell.

[17]  O. Kutsch,et al.  Kinase Control of Latent HIV-1 Infection: PIM-1 Kinase as a Major Contributor to HIV-1 Reactivation , 2013, Journal of Virology.

[18]  F. Despas,et al.  Pharmacology of levosimendan: inotropic, vasodilatory and cardioprotective effects , 2013, Journal of clinical pharmacy and therapeutics.

[19]  R. Siliciano,et al.  Targeting HIV latency: pharmacologic strategies toward eradication. , 2013, Drug discovery today.

[20]  M. Nieminen,et al.  Levosimendan: current data, clinical use and future development , 2013, Heart, lung and vessels.

[21]  Gaurav D. Gaiha,et al.  Reactivation of latent HIV-1 by inhibition of BRD4. , 2012, Cell reports.

[22]  J. Eron,et al.  Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy , 2012, Nature.

[23]  R. Fromentin,et al.  An analog of the natural steroidal alkaloid cortistatin A potently suppresses Tat-dependent HIV transcription. , 2012, Cell host & microbe.

[24]  Felipe García,et al.  Therapeutic vaccines against HIV infection , 2012, Human vaccines & immunotherapeutics.

[25]  R. Siliciano,et al.  Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation. , 2012, Immunity.

[26]  D. Mary,et al.  Levosimendan Modulates Programmed Forms of Cell Death Through KATP Channels and Nitric Oxide , 2011, Journal of cardiovascular pharmacology.

[27]  V. Planelles,et al.  Studies of HIV-1 latency in an ex vivo model that uses primary central memory T cells. , 2011, Methods.

[28]  J. Esko,et al.  A dumbbell-shaped small molecule that promotes cell adhesion and growth. , 2009, Chemistry & biology.

[29]  K. Kehn-Hall,et al.  9-aminoacridine Inhibition of HIV-1 Tat Dependent Transcription , 2009, Virology Journal.

[30]  Alberto Bosque,et al.  Induction of HIV-1 latency and reactivation in primary memory CD4+ T cells. , 2009, Blood.

[31]  E. Moilanen,et al.  Effects of levo‐ and dextrosimendan on NF‐κB‐mediated transcription, iNOS expression and NO production in response to inflammatory stimuli , 2008, British journal of pharmacology.

[32]  Bas J Blaauboer,et al.  The contribution of in vitro toxicity data in hazard and risk assessment: current limitations and future perspectives. , 2008, Toxicology letters.

[33]  N. Çam,et al.  A review of levosimendan in the treatment of heart failure , 2006, Vascular health and risk management.

[34]  Szabolcs Szilágyi,et al.  Two Inotropes With Different Mechanisms of Action: Contractile, PDE-Inhibitory and Direct Myofibrillar Effects of Levosimendan and Enoximone , 2005, Journal of cardiovascular pharmacology.

[35]  I. Édes,et al.  The effects of levosimendan and OR-1896 on isolated hearts, myocyte-sized preparations and phosphodiesterase enzymes of the guinea pig. , 2004, European journal of pharmacology.

[36]  E. Verdin,et al.  HIV reproducibly establishes a latent infection after acute infection of T cells in vitro , 2003, The EMBO journal.

[37]  W. Colucci,et al.  Sustained Hemodynamic Effects of Intravenous Levosimendan , 2003, Circulation.

[38]  A. August,et al.  Recruitment of Phosphatidylinositol 3-Kinase to CD28 Inhibits HIV Transcription by a Tat-Dependent Mechanism1 , 2002, The Journal of Immunology.

[39]  Frederic D. Bushman,et al.  A quantitative assay for HIV DNA integration in vivo , 2001, Nature Medicine.

[40]  G. Pantaleo,et al.  Effects of mycophenolic acid on human immunodeficiency virus infection in vitro and in vivo , 2000, Nature Medicine.

[41]  M. Sunagawa,et al.  The novel calcium sensitizer levosimendan activates the ATP-sensitive K+ channel in rat ventricular cells. , 1997, The Journal of pharmacology and experimental therapeutics.

[42]  J. Levy,et al.  Polymerase substrate depletion: a novel strategy for inhibiting the replication of the human immunodeficiency virus. , 1995, Virology.