Evaporation kinetics of laser heated silica in reactive and inert gases based on near-equilibrium dynamics.

Evaporation kinetics of fused silica were measured up to ≈3000K using CO(2) laser heating, while solid-gas phase chemistry of silica was assessed with hydrogen, air, and nitrogen. Enhanced evaporation in hydrogen was attributed to an additional reduction pathway, while oxidizing conditions pushed the reaction backwards. The observed mass transport limitations supported use of a near-equilibrium analysis for interpreting kinetic data. A semi-empirical model of the evaporation kinetics is derived that accounts for heating, gas chemistry and transport properties. The approach described should have application to materials laser processing, and in applications requiring knowledge of thermal decomposition chemistry under extreme temperatures.

[1]  Harold L. Schick,et al.  A Thermodynamic Analysis of the High-temperature Vaporization Properties of Silica. , 1960 .

[2]  Mercouri G. Kanatzidis,et al.  Journal of Solid State Chemistry: Editorial , 2000 .

[3]  Stuart W. Churchill,et al.  Correlating equations for laminar and turbulent free convection from a horizontal cylinder , 1975 .

[4]  W. Massman A review of the molecular diffusivities of H2O, CO2, CH4, CO, O3, SO2, NH3, N2O, NO, and NO2 in air O2 and N2 near STP , 1998 .

[5]  Mou-Tion Lee Reaction of High‐Silica Optical Fibers with Hydrofluoric Acid , 1984 .

[6]  Manyalibo J. Matthews,et al.  Downstream intensification effects associated with CO2 laser mitigation of fused silica , 2007, SPIE Laser Damage.

[7]  H. Smith,et al.  Hydrogen Surface Etching of Molten Silica , 1988 .

[8]  Nadezhda M. Bulgakova,et al.  Pulsed laser ablation of solids: transition from normal vaporization to phase explosion , 2001 .

[9]  Manyalibo J. Matthews,et al.  Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials , 2010 .

[10]  H. Sohn Overall Rate Analysis of the Gaseous Reduction of Stable Oxides Incorporating Chemical Kinetics, Mass Transfer, and Chemical Equilibrium , 2006 .

[11]  Laurent Gallais,et al.  Investigation of stress induced by CO2 laser processing of fused silica optics for laser damage growth mitigation. , 2009, Optics express.

[12]  H. Sohn The influence of chemical equilibrium on fluid-solid reaction rates and the falsification of activation energy , 2004 .

[13]  J. C. Bevington,et al.  Chemical Reviews , 1970, Nature.

[14]  A. Kar,et al.  Two‐dimensional model for material damage due to melting and vaporization during laser irradiation , 1990 .

[15]  Richard M. Fulrath,et al.  Solubility of Gases in Glass. II. He, Ne, and H2 in Fused Silica , 1972 .

[16]  B. Ozturk,et al.  The rate of formation of SiO by the reaction of CO or H2 with silica and silicate slags , 1985 .

[17]  Donald R Paul,et al.  Industrial & Engineering Chemistry Research: Looking Back , 2013 .

[18]  J. Shackelford,et al.  The thermodynamics of water and hydrogen solubility in fused silica , 1976 .

[19]  R. Doremus Viscosity of silica , 2002 .

[20]  Metals Minerals,et al.  Metallurgical and materials transactions. B, Process metallurgy and materials processing science , 1994 .

[21]  N. Gimelshein,et al.  Analytical and Kinetic Modeling of Ablation Process , 2008 .

[22]  H. Sohn,et al.  Kinetics of the Hydrogen Reduction of Silica Incorporating the Effect of Gas‐Volume Change upon Reaction , 2005 .

[23]  R. Munz,et al.  Silica Decomposition Using a Transferred Arc Process , 1999 .

[24]  Manyalibo J. Matthews,et al.  Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica , 2010 .

[25]  S. Churchill,et al.  Correlating equations for laminar and turbulent free convection from a vertical plate , 1975 .

[26]  J. A. Pask,et al.  REACTION OF FUSED SILICA WITH HYDROGEN GAS , 1982 .

[27]  L. Cser,et al.  Applied Physics A Materials Science & Processing Holography using thermal neutrons , 2002 .

[28]  A. Hall Applied Optics. , 2022, Science.

[29]  Michael D. Feit,et al.  High temperature thermographic measurements of laser heated silica , 2009, Laser Damage.

[30]  R. Cole,et al.  Surface‐Tension‐Driven Flow in a Glass Melt , 1985 .

[31]  J. Karle,et al.  Physics and Chemistry of Glasses. , 1973 .

[32]  Paul J. Wegner,et al.  An improved method of mitigating laser-induced surface damage growth in fused silica using a rastered pulsed CO2 laser , 2010, Laser Damage.

[33]  J. Stone,et al.  Interactions of hydrogen and deuterium with silica optical fibers: A review , 1987 .

[34]  R. Brückner,et al.  Properties and structure of vitreous silica. I , 1970 .

[35]  重治 小野木,et al.  Journal of Applied physics,Vol.33 : 1962年に発表されたレオロジー関連の論文 , 1963 .

[36]  P. Combis,et al.  Impact of two CO(2) laser heatings for damage repairing on fused silica surface. , 2010, Optics express.

[37]  Yildiz Bayazitoglu,et al.  International Journal of Heat and Mass Transfer , 2013 .

[38]  Laurent Gallais,et al.  The effect of CO2 laser annealing on residual stress and on laser damage resistance for fused silica optics , 2010, Laser Damage.

[39]  D R Hall,et al.  Localized CO2 laser damage repair of fused silica optics. , 2006, Applied optics.

[40]  Richard K. Brow,et al.  Journal of the American Ceramic Society: Introduction , 2002 .

[41]  Manyalibo J. Matthews,et al.  Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis , 2009 .

[42]  R. Gardner The kinetics of silica reduction in hydrogen , 1974 .

[43]  Victor I. Masychev,et al.  High-Rate IR Laser Evaporation of Silica Glass , 2003 .