Protein disaggregation machineries in the human cytosol.

[1]  C. Queitsch,et al.  De novo designed Hsp70 activator dissolves intracellular condensates , 2023, bioRxiv.

[2]  M. Diamond,et al.  VCP increases or decreases tau seeding using specific cofactors , 2023, bioRxiv.

[3]  D. Southworth,et al.  Structural insights of the p97/VCP AAA+ ATPase: How adapter interactions coordinate diverse cellular functionality , 2023, The Journal of biological chemistry.

[4]  K. Caldwell,et al.  Tuning Hsp104 specificity to selectively detoxify α-synuclein. , 2023, Molecular cell.

[5]  J. Vilar,et al.  Chaperone-driven entropic separation of amyloid nanofilament bundles , 2023, bioRxiv.

[6]  Jessica M. Phan,et al.  Novel VCP activator reverses multisystem proteinopathy nuclear proteostasis defects and enhances TDP-43 aggregate clearance , 2023, bioRxiv.

[7]  W. Baumeister,et al.  The AAA+ chaperone VCP disaggregates Tau fibrils and generates aggregate seeds in a cellular system , 2023, Nature Communications.

[8]  Nadinath B. Nillegoda,et al.  Replicative aging impedes stress-induced assembly of a key human protein disaggregase , 2023, bioRxiv.

[9]  J. Kirstein,et al.  Identification of a HTT-specific binding motif in DNAJB1 essential for suppression and disaggregation of HTT , 2022, Nature Communications.

[10]  H. True,et al.  Loss of function variants in DNAJB4 cause a myopathy with early respiratory failure , 2022, bioRxiv.

[11]  H. Saibil,et al.  Structural basis of ubiquitin‐independent PP1 complex disassembly by p97 , 2022, bioRxiv.

[12]  J. Shorter,et al.  AAA+ proteins: one motor, multiple ways to work. , 2022, Biochemical Society transactions.

[13]  O. Pansarasa,et al.  The Role of VCP Mutations in the Spectrum of Amyotrophic Lateral Sclerosis—Frontotemporal Dementia , 2022, Frontiers in Neurology.

[14]  R. Melki,et al.  Dissecting aggregation and seeding dynamics of α-Syn polymorphs using the phasor approach to FLIM , 2022, bioRxiv.

[15]  H. Saibil,et al.  Cooperative amyloid fibre binding and disassembly by the Hsp70 disaggregase , 2021, bioRxiv.

[16]  J. Vilar,et al.  All-or-none amyloid disassembly via chaperone-triggered fibril unzipping favors clearance of α-synuclein toxic species , 2021, Proceedings of the National Academy of Sciences.

[17]  Jason C. Young,et al.  The chaperone HSPB1 prepares protein aggregates for resolubilization by HSP70 , 2021, Scientific Reports.

[18]  S. Wolf,et al.  Hsp40s play complementary roles in the prevention of tau amyloid formation , 2021, eLife.

[19]  Brian A. Maxwell,et al.  Ubiquitination is essential for recovery of cellular activities after heat shock , 2021, Science.

[20]  Brian A. Maxwell,et al.  Ubiquitination of G3BP1 mediates stress granule disassembly in a context-specific manner , 2021, Science.

[21]  Lei Liu,et al.  Mechanistic insight into substrate processing and allosteric inhibition of human p97 , 2021, Nature Structural & Molecular Biology.

[22]  Nadinath B. Nillegoda,et al.  Molecular dissection of amyloid disaggregation by human HSP70 , 2020, Nature.

[23]  Nadinath B. Nillegoda,et al.  HSP40 proteins use class-specific regulation to drive HSP70 functional diversity , 2020, Nature.

[24]  C. Dobson,et al.  The Hsc70 disaggregation machinery removes monomer units directly from α-synuclein fibril ends , 2020, Nature Communications.

[25]  Jessica Tittelmeier,et al.  Molecular Chaperones: A Double-Edged Sword in Neurodegenerative Diseases , 2020, Frontiers in Aging Neuroscience.

[26]  M. Grossman,et al.  Autosomal dominant VCP hypomorph mutation impairs disaggregation of PHF-tau , 2020, Science.

[27]  H. Schätzl,et al.  From Seeds to Fibrils and Back: Fragmentation as an Overlooked Step in the Propagation of Prions and Prion-Like Proteins , 2020, Biomolecules.

[28]  B. Bukau,et al.  The HSP110/HSP70 disaggregation system generates spreading‐competent toxic α‐synuclein species , 2020, The EMBO journal.

[29]  M. Savitski,et al.  Aggregation and disaggregation features of the human proteome , 2020, bioRxiv.

[30]  H. Kampinga,et al.  Disassembly of Tau fibrils by the human Hsp70 disaggregation machinery generates small seeding-competent species , 2019, The Journal of Biological Chemistry.

[31]  S. Chandra,et al.  Hsp110 mitigates α-synuclein pathology in vivo , 2019, Proceedings of the National Academy of Sciences.

[32]  Nadinath B. Nillegoda,et al.  The Hsp70 chaperone network , 2019, Nature Reviews Molecular Cell Biology.

[33]  E. C. Twomey,et al.  Substrate processing by the Cdc48 ATPase complex is initiated by ubiquitin unfolding , 2019, Science.

[34]  J. Shorter,et al.  Spiraling in Control: Structures and Mechanisms of the Hsp104 Disaggregase. , 2019, Cold Spring Harbor perspectives in biology.

[35]  M. Hipp,et al.  The proteostasis network and its decline in ageing , 2019, Nature Reviews Molecular Cell Biology.

[36]  D. Klenerman,et al.  Filamentous Aggregates Are Fragmented by the Proteasome Holoenzyme , 2018, bioRxiv.

[37]  F. Förster,et al.  Human chaperones untangle fibrils of the Alzheimer protein Tau , 2018, bioRxiv.

[38]  D. Ghosh,et al.  The ATPase VCP/p97 functions as a disaggregase against toxic Huntingtin‐exon1 aggregates , 2018, FEBS letters.

[39]  H. Kampinga,et al.  Cellular Handling of Protein Aggregates by Disaggregation Machines. , 2018, Molecular cell.

[40]  E. Wanker,et al.  Complete suppression of Htt fibrilization and disaggregation of Htt fibrils by a trimeric chaperone complex , 2018, The EMBO journal.

[41]  H. Meyer,et al.  VCP/p97-Mediated Unfolding as a Principle in Protein Homeostasis and Signaling. , 2017, Molecular cell.

[42]  Nadinath B. Nillegoda,et al.  In vivo properties of the disaggregase function of J‐proteins and Hsc70 in Caenorhabditis elegans stress and aging , 2017, Aging cell.

[43]  Y. Ye,et al.  A Mighty “Protein Extractor” of the Cell: Structure and Function of the p97/CDC48 ATPase , 2017, Front. Mol. Biosci..

[44]  Nadinath B. Nillegoda,et al.  Evolution of an intricate J-protein network driving protein disaggregation in eukaryotes , 2017, eLife.

[45]  T. Rapoport,et al.  Molecular Mechanism of Substrate Processing by the Cdc48 ATPase Complex , 2017, Cell.

[46]  Nadinath B. Nillegoda,et al.  Human Hsp70 Disaggregase Reverses Parkinson's-Linked α-Synuclein Amyloid Fibrils. , 2015, Molecular cell.

[47]  Nadinath B. Nillegoda,et al.  Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation , 2015, Nature.

[48]  R. Parker,et al.  Eukaryotic Stress Granules Are Cleared by Autophagy and Cdc48/VCP Function , 2013, Cell.

[49]  Nadinath B. Nillegoda,et al.  Metazoan Hsp70 machines use Hsp110 to power protein disaggregation , 2012, The EMBO journal.

[50]  J. Shorter,et al.  The Mammalian Disaggregase Machinery: Hsp110 Synergizes with Hsp70 and Hsp40 to Catalyze Protein Disaggregation and Reactivation in a Cell-Free System , 2011, PloS one.

[51]  Sonja W. Scholz,et al.  Exome Sequencing Reveals VCP Mutations as a Cause of Familial ALS , 2010, Neuron.

[52]  P. De Los Rios,et al.  The mechanism of Hsp70 chaperones: (entropic) pulling the models together. , 2007, Trends in biochemical sciences.

[53]  Paolo De Los Rios,et al.  Hsp70 chaperones accelerate protein translocation and the unfolding of stable protein aggregates by entropic pulling. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[54]  K. Fliessbach,et al.  Mutant valosin‐containing protein causes a novel type of frontotemporal dementia , 2005, Annals of neurology.

[55]  A. Pestronk,et al.  Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein , 2004, Nature Genetics.

[56]  H. Kampinga,et al.  In Vivo Chaperone Activity of Heat Shock Protein 70 and Thermotolerance , 1999, Molecular and Cellular Biology.