Variational Inference for Background Subtraction in Infrared Imagery

We propose a Gaussian mixture model for background subtraction in infrared imagery. Following a Bayesian approach, our method automatically estimates the number of Gaussian components as well as their parameters, while simultaneously it avoids over/under fitting. The equations for estimating model parameters are analytically derived and thus our method does not require any sampling algorithm that is computationally and memory inefficient. The pixel density estimate is followed by an efficient and highly accurate updating mechanism, which permits our system to be automatically adapted to dynamically changing operation conditions. Experimental results and comparisons with other methods show that our method outperforms, in terms of precision and recall, while at the same time it keeps computational cost suitable for real-time applications.

[1]  Weihong Wang,et al.  Improved human detection and classification in thermal images , 2010, 2010 IEEE International Conference on Image Processing.

[2]  James W. Davis,et al.  Background-Subtraction in Thermal Imagery Using Contour Saliency , 2007, International Journal of Computer Vision.

[3]  Zoran Zivkovic,et al.  Improved adaptive Gaussian mixture model for background subtraction , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[4]  James W. Davis,et al.  Robust Background-Subtraction for Person Detection in Thermal Imagery , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[5]  Mark E Hallenbeck,et al.  Extracting Roadway Background Image , 2006 .

[6]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[7]  Xin Li,et al.  Pedestrian detection and tracking in infrared imagery using shape and appearance , 2007, Comput. Vis. Image Underst..

[8]  James W. Davis,et al.  Fusion-Based Background-Subtraction using Contour Saliency , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[9]  Nikolaos F. Matsatsinis,et al.  Student-t background modeling for persons' fall detection through visual cues , 2012, 2012 13th International Workshop on Image Analysis for Multimedia Interactive Services.

[10]  Chandrika Kamath,et al.  Robust Background Subtraction with Foreground Validation for Urban Traffic Video , 2005, EURASIP J. Adv. Signal Process..

[11]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[12]  Thierry Bouwmans,et al.  Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos , 2009, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[13]  Benjamin Höferlin,et al.  Evaluation of background subtraction techniques for video surveillance , 2011, CVPR 2011.

[14]  Thomas B. Moeslund,et al.  Long-Term Occupancy Analysis Using Graph-Based Optimisation in Thermal Imagery , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Fatih Murat Porikli,et al.  Human Detection via Classification on Riemannian Manifolds , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  M. Tech,et al.  Background Subtraction Techniques: Systematic Evaluation and Comparative Analysis , 2013 .

[17]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[18]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[19]  Tao Xiang,et al.  Background Subtraction with DirichletProcess Mixture Models , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Fatih Murat Porikli,et al.  Achieving real-time object detection and tracking under extreme conditions , 2006, Journal of Real-Time Image Processing.

[21]  Fatih Murat Porikli,et al.  Pedestrian Detection via Classification on Riemannian Manifolds , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Nikolaos D. Doulamis Coupled multi-object tracking and labeling for vehicle trajectory estimation and matching , 2009, Multimedia Tools and Applications.

[23]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[24]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Nigel J. B. McFarlane,et al.  Segmentation and tracking of piglets in images , 1995, Machine Vision and Applications.

[26]  Jesús Bescós,et al.  Background Subtraction Techniques: Systematic Evaluation and Comparative Analysis , 2009, ACIVS.

[27]  Dragoljub Pokrajac,et al.  Tracking motion objects in infrared videos , 2005, IEEE Conference on Advanced Video and Signal Based Surveillance, 2005..

[28]  Theodora A. Varvarigou,et al.  IMPROVING MULTI-CAMERA ACTIVITY RECOGNITION BY EMPLOYING NEURAL NETWORK BASED READJUSTMENT , 2012, Appl. Artif. Intell..

[29]  Nizar Bouguila,et al.  Finite asymmetric generalized Gaussian mixture models learning for infrared object detection , 2013, Comput. Vis. Image Underst..

[30]  Stefano Messelodi,et al.  A Kalman Filter Based Background Updating Algorithm Robust to Sharp Illumination Changes , 2005, ICIAP.

[31]  Ferdinand van der Heijden,et al.  Efficient adaptive density estimation per image pixel for the task of background subtraction , 2006, Pattern Recognit. Lett..

[32]  Sanjoy Dasgupta,et al.  On-Line Estimation with the Multivariate Gaussian Distribution , 2007, COLT.