Microalgal mass culture systems and methods: Their limitation and potential

[1]  J. Grobbelaar,et al.  Physiological and technological considerations for optimising mass algal cultures , 2000, Journal of Applied Phycology.

[2]  A. Richmond,et al.  Microalgal biotechnology at the turn of the millennium: A personal view , 2000, Journal of Applied Phycology.

[3]  E. Molina Grima,et al.  Mixotrophic growth of Phaeodactylum tricornutum on glycerol: growth rate and fatty acid profile , 2000, Journal of Applied Phycology.

[4]  Hideo Tanaka,et al.  Light requirement and photosynthetic cell cultivation – Development of processes for efficient light utilization in photobioreactors , 2000, Journal of Applied Phycology.

[5]  J. Ogbonna,et al.  Heterotrophic cultivation of Euglena gracilis Z for efficient production of α-tocopherol , 1998, Journal of Applied Phycology.

[6]  John R. Benemann,et al.  Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells , 1998, Journal of Applied Phycology.

[7]  P. Durand,et al.  Comparison of artificial light photobioreactors and other production systems using Porphyridium cruentum , 1998, Journal of Applied Phycology.

[8]  I. Karube,et al.  Changes in eicosapentaenoic acid content of Navicula saprophila, Rhodomonas salina and Nitzschia sp. under mixotrophic conditions , 1997, Journal of Applied Phycology.

[9]  R. Ueda,et al.  Improvement of photosynthesis in dense microalgal suspension by reduction of light harvesting pigments , 1997, Journal of Applied Phycology.

[10]  Yuan-Kun Lee,et al.  Commercial production of microalgae in the Asia-Pacific rim , 1997, Journal of Applied Phycology.

[11]  Yuan-Kun Lee,et al.  Growth of Chlorella outdoors in a changing light environment , 1997, Journal of Applied Phycology.

[12]  Makio Kobayashi,et al.  Light-independent, astaxanthin production by the green microalga Haematococcus pluvialis under salt stress , 1997, Biotechnology Letters.

[13]  Michael A. Borowitzka,et al.  Microalgae for aquaculture: Opportunities and constraints , 1997, Journal of Applied Phycology.

[14]  A. Richmond,et al.  Efficient utilization of high irradiance for production of photoautotropic cell mass: a survey , 1996, Journal of Applied Phycology.

[15]  Ladislav Nedbal,et al.  Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation , 1996, Journal of Applied Phycology.

[16]  F. G. Fernández,et al.  Productivity analysis of outdoor chemostat culture in tubular air-lift photobioreactors , 1996, Journal of Applied Phycology.

[17]  Si-yuan Guo,et al.  Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture , 1996, Biotechnology Letters.

[18]  Yuan-Kun Lee,et al.  Mixotrophic growth ofChlorella sorokiniana in outdoor enclosed photobioreactor , 1996, Journal of Applied Phycology.

[19]  Yuan-Kun Lee,et al.  Design and performance of an α-type tubular photobioreactor for mass cultivation of microalgae , 1995, Journal of Applied Phycology.

[20]  J. Day,et al.  Development of media for the mixotrophic/heterotrophic culture ofBrachiomonas submarina , 1994, Journal of Applied Phycology.

[21]  A. Richmond,et al.  Optimizing the population density inIsochrysis galbana grown outdoors in a glass column photobioreactor , 1994, Journal of Applied Phycology.

[22]  J. Grobbelaar Turbulence in mass algal cultures and the role of light/dark fluctuations , 1994, Journal of Applied Phycology.

[23]  W. Barclay,et al.  Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms , 1994, Journal of Applied Phycology.

[24]  Jeffrey A. Running,et al.  Heterotrophic production of ascorbic acid by microalgae , 1994, Journal of Applied Phycology.

[25]  Daniel Chaumont,et al.  Biotechnology of algal biomass production: a review of systems for outdoor mass culture , 1993, Journal of Applied Phycology.

[26]  A. Richmond,et al.  A new tubular reactor for mass production of microalgae outdoors , 1993, Journal of Applied Phycology.

[27]  Raymond M. Gladue,et al.  Microalgal feeds for aquaculture , 1993, Journal of Applied Phycology.

[28]  M. Tredici,et al.  From open ponds to vertical alveolar panels: the Italian experience in the development of reactors for the mass cultivation of phototrophic microorganisms , 1992, Journal of Applied Phycology.

[29]  Michael A. Borowitzka,et al.  Algal biotechnology products and processes — matching science and economics , 1992, Journal of Applied Phycology.

[30]  Michael R. Johns,et al.  Effect of C/N ratio and aeration on the fatty acid composition of heterotrophicChlorella sorokiniana , 1991, Journal of Applied Phycology.

[31]  A. Richmond,et al.  Quantitative assessment of the major limitations on productivity ofSpirulina platensis in open raceways , 1990, Journal of Applied Phycology.

[32]  Hu Qiang,et al.  Productivity and photosynthetic efficiency ofSpirulina platensis as affected by light intensity, algal density and rate of mixing in a flat plate photobioreactor , 2004, Journal of Applied Phycology.

[33]  M. Johns,et al.  Fatty acid production by heterotrophic Chlorella saccharophila , 2004, Hydrobiologia.

[34]  M. Borowitzka Commercial production of microalgae: ponds, tanks, tubes and fermenters , 1999 .

[35]  J. German,et al.  Photoheterotrophy in the production of phytoplankton organisms , 1999 .

[36]  M. Kentouri,et al.  Methanol as alternative carbon source for quicker efficient production of the microalgae Chlorella m , 1999 .

[37]  J. Ogbonna,et al.  An integrated solar and artificial light system for internal illumination of photobioreactors. , 1999, Journal of biotechnology.

[38]  Y. Chisti,et al.  Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae , 1999 .

[39]  J. Sevilla,et al.  Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: effects of dilution rate, tube diameter, and solar irradiance , 1998, Biotechnology and bioengineering.

[40]  A. Vonshak Outdoor Mass Production of Spirulina: The Basic Concept , 1997 .

[41]  Feng Chen,et al.  High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system , 1997 .

[42]  H Guterman,et al.  A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs , 2000, Biotechnology and bioengineering.

[43]  Feng Chen,et al.  Heterotrophic growth of Chlamydomonas reinhardtii on acetate in chemostat culture , 1996 .

[44]  J. Doucha,et al.  Novel outdoor thin-layer high density micro algal culture system: Productivity and operational parameters , 1995 .

[45]  F. Marquez,et al.  Enhancement of biomass and pigment production during growth of Spirulina platensis in mixotrophic culture , 1995 .

[46]  F. G. Fernández,et al.  Outdoor culture of Isochrysis galbana ALII-4 in a closed tubular photobioreactor , 1994 .

[47]  E. Becker Microalgae: Biotechnology and Microbiology , 1994 .

[48]  Ken Sasaki,et al.  Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions , 1993 .

[49]  C. Low,et al.  Productivity of outdoor algal cultures in enclosed tubular photobioreactor. , 1992, Biotechnology and bioengineering.

[50]  M. Nieva,et al.  Uptake and Utilization of Fructose by Anabaena variabilis ATCC 29413. Effect on Respiration and Photosynthesis , 1992 .

[51]  Shiro Nagai,et al.  Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions , 1992 .

[52]  B. Palsson,et al.  High‐density photoautotrophic algal cultures: Design, construction, and operation of a novel photobioreactor system , 1991, Biotechnology and bioengineering.

[53]  Yuan-Kun Lee,et al.  Effect of photobioreactor inclination on the biomass productivity of an outdoor algal culture , 1991, Biotechnology and bioengineering.

[54]  M. Orús,et al.  Interactions between Glucose and Inorganic Carbon Metabolism in Chlorella vulgaris Strain UAM 101. , 1991, Plant physiology.

[55]  T. Matsunaga,et al.  Glutamate production from CO2 by Marine CyanobacteriumSynechococcus sp. , 1991 .

[56]  T. Matsunaga,et al.  Glutamate production from CO2 by marine cyanobacterium Synechococcus sp. using a novel biosolar reactor employing light-diffusing optical fibers , 1991 .

[57]  G. C. Zittelli,et al.  A vertical alveolar panel (VAP) for outdoor mass cultivation of microalgae and cyanobacteria , 1991 .

[58]  J. D. Day,et al.  Development of an industrial-scale process for the heterotrophic production of a micro-algal mollusc feed , 1991 .

[59]  P. Bubrick Production of astaxanthin from Haematococcus , 1991 .

[60]  Edmund T. Y. Lee,et al.  A laboratory scale air-lift helical photobioreactor to increase biomass output rate of photosynthetic algal cultures , 1990 .

[61]  S. Ben-Yaakov,et al.  Automatic on‐line growth estimation method for outdoor algal biomass production , 1989, Biotechnology and bioengineering.

[62]  Y. Tani,et al.  Screening for Tocopherol-producing Microorganisms and α-Tocopherol Production by Euglena gracilis Z , 1989 .

[63]  W. Kowallik,et al.  Photoinhibition of Glucose Uptake in Chlorella , 1987 .

[64]  Yuan-Kun Lee Enclosed bioreactors for the mass cultivation of photosynthetic microorganisms: the future trend , 1986 .

[65]  K. Mori,et al.  Photoautotrophic bioreactor using visible solar rays condensed by fresnel lenses and transmitted through optical fibers , 1986 .

[66]  Giuseppe Torzillo,et al.  Production of Spirulina biomass in closed photobioreactors , 1986 .

[67]  A. Richmond,et al.  CRC Handbook of microalgal mass culture , 1986 .

[68]  P. Falkowski,et al.  Kinetics of light-intensity adaptation in a marine planktonic diatom , 1984 .

[69]  Ferda Mavituna,et al.  Biochemical engineering and biotechnology handbook , 1982 .

[70]  S. Aiba,et al.  Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus , 1981 .

[71]  P. Soong Production and development of Chlorella and Spirulina in Taiwan , 1980 .

[72]  H. Endo,et al.  Studies on Chlorella regularis, heterotrophic fast-growing strain II. Mixotrophic growth in relation to light intensity and acetate concentration , 1977 .

[73]  W. Tanner,et al.  Regulation of Hexose Transport in Chlorella vulgaris , 1974 .

[74]  M. Droop Heterotrophy of carbon , 1974 .

[75]  W. Tanner,et al.  Regulation of Hexose Transport in Chlorella vulgaris: Characteristics of Induction and Turnover. , 1974, Plant physiology.

[76]  Ivan Málek,et al.  Dual Purpose Open Circulation Units for Large Scale Culture of Algae in Temperate Zones. I. Basic Design Considerations and Scheme of a Pilot Plant , 1970 .

[77]  N. Carr,et al.  The incorporation and metabolism of glucose by Anabaena variabilis. , 1968, Journal of general microbiology.

[78]  A. Smith,et al.  Biochemical Basis of Obligate Autotrophy in Blue-Green Algae and Thiobacilli , 1967, Journal of bacteriology.

[79]  R. Lewin,et al.  Culture and Nutrition of Some Apochlorotic Diatoms of the Genus Nitzschia , 1967 .

[80]  R. Moore,et al.  Photoassimilation of organic compounds by autotrophic blue-green algae. , 1965, Biochimica et biophysica acta.

[81]  J. R. Cook,et al.  Glucose vs. acetate metabolism in Euglena. , 1965, The Journal of protozoology.

[82]  D. B. Parihar Saccharides of Different Varieties of Indian Rice , 1955, Nature.