The Giant Magellan Telescope (GMT) structure

A concept design has been developed for the Giant Magellan Telescope (GMT). The project is a collaboration by a group of U.S. universities and research institutions to build a 21.5-meter equivalent aperture optical-infrared telescope in Chile. The segmented primary mirror consists of seven 8.4-meter diameter borosilicate honeycomb mirrors that will be cast by the Steward Observatory Mirror Laboratory. The fast primary optics allow the use of unusually compact telescope and enclosure structures. A wide range of secondary trusses has been considered for the alt-az mount. The chosen truss employs carbon fiber and steel and, due to its unique geometry, achieves high stiffness with minimal wind area and primary obscuration. The mount incorporates hydrostatic supports and a C-ring elevation structure similar in concept to those implemented on the Magellan 6.5-m and LBT dual 8.4-m telescopes. Extensive finite element analysis has been used to optimize the telescope structure, achieving a lowest telescope resonant frequency of ~5 Hz. The design allows for removal and replacement of any of the 7 subcells for off-telescope mirror coating with no risk to the other mirrors. A wide range of instruments can be used which mount to the top or underside of a large instrument platform below the primary mirror cells. Large instruments are interchanged during the day while small and medium-sized instruments can be enabled quickly during the night. The large Gregorian instruments will incorporate astatic supports to minimize flexure and hysteresis.

[1]  Patrick McCarthy,et al.  Status of the Giant Magellan Telescope (GMT) project , 2004, SPIE Astronomical Telescopes + Instrumentation.

[2]  Alfred Vidal-Madjar,et al.  The Magellan project , 1982 .

[3]  David Carr,et al.  Design of the Magellan Project 6.5-meter telescope: telescope structure and mechanical systems , 1994, Astronomical Telescopes and Instrumentation.