Cholesky decomposition within local multireference singles and doubles configuration interaction.

A local multireference singles and doubles configuration interaction method in which Cholesky vectors are used in place of conventional two-electron integrals has been developed (CD-LMRSDCI). To reduce the overall cost associated with our linear scaling LMRSDCI method presented earlier [T. S. Chwee et al., J. Chem. Phys. 128, 224106 (2008)], we adopt a two-pronged approach. First, localized orthogonal virtual orbitals, introduced by Subotnik et al. [J. Chem. Phys. 123, 114108 (2005)], are substituted for nonorthogonal projected atomic orbitals. This obviates the need for contraction with overlap matrices and simplifies our working formalism. In addition, we restructure the rate-limiting step of our LMRSDCI algorithm to be driven by the search for two-electron integrals instead of configuration state functions. The shift necessitates a flexible way of processing the four-indexed two-electron integrals, which is facilitated by use of two-indexed Cholesky vectors. Our restructured LMRSDCI method is an order of magnitude faster and has greatly reduced storage requirements so that we are able to apply it to molecules containing up to 50 heavy atoms. However, generation of the Cholesky vectors and their subsequent transformation to the molecular orbital (MO) basis is not linear scaling. Together with assembling the MO integrals from the Cholesky vectors, these now constitute the rate-limiting steps in our method.

[1]  B. Roos,et al.  A new method for large-scale Cl calculations , 1972 .

[2]  Georg Hetzer,et al.  Multipole approximation of distant pair energies in local MP2 calculations , 1998 .

[3]  Richard A. Friesner,et al.  Pseudospectral localized Mo/ller–Plesset methods: Theory and calculation of conformational energies , 1995 .

[4]  P Pulay,et al.  Local Treatment of Electron Correlation , 1993 .

[5]  Thomas Bondo Pedersen,et al.  Polarizability and optical rotation calculated from the approximate coupled cluster singles and doubles CC2 linear response theory using Cholesky decompositions. , 2004, The Journal of chemical physics.

[6]  G. Shortley,et al.  The Theory of Complex Spectra , 1930 .

[7]  Siegfried Schmauder,et al.  Comput. Mater. Sci. , 1998 .

[8]  E. Carter,et al.  Size extensive modification of local multireference configuration interaction. , 2004, The Journal of chemical physics.

[9]  R. Bartlett,et al.  Fock space multireference coupled cluster method with full inclusion of connected triples for excitation energies. , 2004, The Journal of chemical physics.

[10]  Yixiang Cao,et al.  Correlated ab Initio Electronic Structure Calculations for Large Molecules , 1999 .

[11]  J. Paldus,et al.  Analysis of the multireference state-universal coupled-cluster Ansatz , 2003 .

[12]  Frederick R. Manby,et al.  Fast linear scaling second-order Møller-Plesset perturbation theory (MP2) using local and density fitting approximations , 2003 .

[13]  Hans-Joachim Werner,et al.  Low-order scaling local electron correlation methods. IV. Linear scaling local coupled-cluster (LCCSD) , 2001 .

[14]  Peter Pulay,et al.  Localizability of dynamic electron correlation , 1983 .

[15]  Hans-Joachim Werner,et al.  Local treatment of electron correlation in coupled cluster theory , 1996 .

[16]  Peter Pulay,et al.  Orbital-invariant formulation and second-order gradient evaluation in Møller-Plesset perturbation theory , 1986 .

[17]  Guntram Rauhut,et al.  Analytical energy gradients for local second-order Mo/ller–Plesset perturbation theory , 1998 .

[18]  J. Paldus,et al.  Multi-reference Brillouin–Wigner coupled-cluster method with a general model space , 2005 .

[19]  Claus Ehrhardt,et al.  The coupled pair functional (CPF). A size consistent modification of the CI(SD) based on an energy functional , 1985 .

[20]  Ernest R. Davidson,et al.  Configuration interaction calculations on the nitrogen molecule , 1974 .

[21]  Rodney J. Bartlett,et al.  A multi-reference coupled-cluster method for molecular applications , 1984 .

[22]  Marco Häser,et al.  Auxiliary basis sets to approximate Coulomb potentials , 1995 .

[23]  Robert J. Buenker,et al.  The ground state of the CN+ ion: a multi-reference Ci study , 1980 .

[24]  Christof Hättig,et al.  CC2 excitation energy calculations on large molecules using the resolution of the identity approximation , 2000 .

[25]  Reinhold F. Fink,et al.  A multi-configuration reference CEPA method based on pair natural orbitals , 1993 .

[26]  Emily A. Carter,et al.  Local correlation in the virtual space in multireference singles and doubles configuration interaction , 2003 .

[27]  N. H. Beebe,et al.  Simplifications in the generation and transformation of two‐electron integrals in molecular calculations , 1977 .

[28]  S. F. Boys Construction of Some Molecular Orbitals to Be Approximately Invariant for Changes from One Molecule to Another , 1960 .

[29]  Martin Head-Gordon,et al.  Noniterative local second order Mo/ller–Plesset theory: Convergence with local correlation space , 1998 .

[30]  Roland Lindh,et al.  Atomic Cholesky decompositions: a route to unbiased auxiliary basis sets for density fitting approximation with tunable accuracy and efficiency. , 2009, The Journal of chemical physics.

[31]  I. Røeggen,et al.  On the Beebe-Linderberg two-electron integral approximation , 1986 .

[32]  Peter Pulay,et al.  Local configuration interaction: An efficient approach for larger molecules , 1985 .

[33]  Francesco A Evangelista,et al.  Coupling term derivation and general implementation of state-specific multireference coupled cluster theories. , 2007, The Journal of chemical physics.

[34]  I Røeggen,et al.  Cholesky decomposition of the two-electron integral matrix in electronic structure calculations. , 2008, The Journal of chemical physics.

[35]  Thomas Bondo Pedersen,et al.  Reduced scaling in electronic structure calculations using Cholesky decompositions , 2003 .

[36]  Martin Head-Gordon,et al.  Fast localized orthonormal virtual orbitals which depend smoothly on nuclear coordinates. , 2005, The Journal of chemical physics.

[37]  Robert J. Gdanitz,et al.  The averaged coupled-pair functional (ACPF): A size-extensive modification of MR CI(SD) , 1988 .

[38]  S. Chattopadhyay,et al.  A state-specific approach to multireference coupled electron-pair approximation like methods: development and applications. , 2004, The Journal of chemical physics.

[39]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[40]  Emily A. Carter,et al.  Multi-reference weak pairs local configuration interaction: efficient calculations of bond breaking , 2001 .

[41]  Martin Head-Gordon,et al.  Auxiliary basis expansions for large-scale electronic structure calculations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[42]  J. Simons,et al.  Application of cholesky-like matrix decomposition methods to the evaluation of atomic orbital integrals and integral derivatives , 1989 .

[43]  J. Pittner,et al.  Multireference Brillouin-Wigner coupled clusters method with noniterative perturbative connected triples. , 2006, The Journal of chemical physics.

[44]  Jiří Pittner,et al.  Continuous transition between Brillouin-Wigner and Rayleigh-Schrödinger perturbation theory, generalized Bloch equation, and Hilbert space multireference coupled cluster , 2003 .

[45]  Francesco Aquilante,et al.  Fast noniterative orbital localization for large molecules. , 2006, The Journal of chemical physics.

[46]  John C. Slater,et al.  The Theory of Complex Spectra , 1929 .

[47]  P. Siegbahn Multiple substitution effects in configuration interaction calculations , 1978 .

[48]  S. Peyerimhoff,et al.  Comparison of perturbatively corrected MRD CI results with a full CI treatment of the BH ground state , 1983 .

[49]  J. Paldus,et al.  Performance of the general-model-space state-universal coupled-cluster method. , 2004, The Journal of chemical physics.

[50]  J. Almlöf,et al.  Integral approximations for LCAO-SCF calculations , 1993 .

[51]  E. Davidson The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .

[52]  T. Martínez,et al.  LOCAL WEAK PAIRS SPECTRAL AND PSEUDOSPECTRAL SINGLES AND DOUBLES CONFIGURATION INTERACTION , 1996 .

[53]  Wei Li,et al.  An efficient implementation of the "cluster-in-molecule" approach for local electron correlation calculations. , 2006, The Journal of chemical physics.

[54]  Rodney J. Bartlett,et al.  Multi-reference averaged quadratic coupled-cluster method: a size-extensive modification of multi-reference CI , 1993 .

[55]  Martin Head-Gordon,et al.  Closely approximating second-order Mo/ller–Plesset perturbation theory with a local triatomics in molecules model , 2000 .

[56]  Martin W. Feyereisen,et al.  Use of approximate integrals in ab initio theory. An application in MP2 energy calculations , 1993 .

[57]  Peter Pulay,et al.  The local correlation treatment. II. Implementation and tests , 1988 .

[58]  Robert J. Buenker,et al.  Individualized configuration selection in CI calculations with subsequent energy extrapolation , 1974 .

[59]  Klaus Ruedenberg,et al.  Localized Atomic and Molecular Orbitals , 1963 .

[60]  Roland Lindh,et al.  Unbiased auxiliary basis sets for accurate two-electron integral approximations. , 2007, The Journal of chemical physics.

[61]  E. Carter,et al.  Local weak-pairs pseudospectral multireference configuration interaction , 2002 .

[62]  S. Wilson,et al.  On the generalized multi-reference Brillouin-Wigner coupled cluster theory , 2001 .

[63]  P. Kollman,et al.  Encyclopedia of computational chemistry , 1998 .

[64]  Paul G. Mezey,et al.  A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions , 1989 .

[65]  Christian Ochsenfeld,et al.  Multipole-based integral estimates for the rigorous description of distance dependence in two-electron integrals. , 2005, The Journal of chemical physics.

[66]  Florian Weigend,et al.  Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials , 1997 .

[67]  Jonas Boström,et al.  Ab Initio Density Fitting: Accuracy Assessment of Auxiliary Basis Sets from Cholesky Decompositions. , 2009, Journal of chemical theory and computation.

[68]  Robert J. Buenker,et al.  Applicability of the multi-reference double-excitation CI (MRD-CI) method to the calculation of electronic wavefunctions and comparison with related techniques , 1978 .

[69]  E. Carter,et al.  Reduced Scaling Electron Correlation Methods , 2004 .

[70]  Alistair P. Rendell,et al.  COUPLED-CLUSTER THEORY EMPLOYING APPROXIMATE INTEGRALS : AN APPROACH TO AVOID THE INPUT/OUTPUT AND STORAGE BOTTLENECKS , 1994 .

[71]  Ernest R. Davidson,et al.  Size consistency in the dilute helium gas electronic structure , 1977 .

[72]  Ivan Hubač,et al.  Size-extensivity correction for the state-specific multireference Brillouin–Wigner coupled-cluster theory , 2000 .

[73]  Marco Häser,et al.  Improvements on the direct SCF method , 1989 .

[74]  B. Roos,et al.  Molcas: a program package for computational chemistry. , 2003 .

[75]  Roland Lindh,et al.  Linear scaling multireference singles and doubles configuration interaction. , 2008, The Journal of chemical physics.

[76]  Georg Hetzer,et al.  Low-order scaling local electron correlation methods. I. Linear scaling local MP2 , 1999 .

[77]  Joseph E. Subotnik,et al.  Linear scaling density fitting. , 2006, The Journal of chemical physics.

[78]  Robert J. Gdanitz,et al.  A new version of the multireference averaged coupled‐pair functional (MR‐ACPF‐2) , 2001 .

[79]  R. Lindh,et al.  Low-cost evaluation of the exchange Fock matrix from Cholesky and density fitting representations of the electron repulsion integrals. , 2007, The Journal of chemical physics.

[80]  Peter Pulay,et al.  Fourth‐order Mo/ller–Plessett perturbation theory in the local correlation treatment. I. Method , 1987 .

[81]  E. Carter,et al.  Removal of the bottleneck in local correlation methods , 1997 .

[82]  Stephen Wilson,et al.  Universal basis sets and Cholesky decomposition of the two-electron integral matrix , 1990 .

[83]  Rodney J. Bartlett,et al.  Approximately extensive modifications of the multireference configuration interaction method: A theoretical and practical analysis , 1995 .

[84]  Roland Lindh,et al.  Density fitting with auxiliary basis sets from Cholesky decompositions , 2009 .