Permanent Alteration of PCSK9 With In Vivo CRISPR-Cas9 Genome Editing

Rationale: Individuals with naturally occurring loss-of-function proprotein convertase subtilisin/kexin type 9 (PCSK9) mutations experience reduced low-density lipoprotein cholesterol levels and protection against cardiovascular disease. Objective: The goal of this study was to assess whether genome editing using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system can efficiently introduce loss-of-function mutations into the endogenous PCSK9 gene in vivo. Methods and Results: We used adenovirus to express CRISPR-associated 9 and a CRISPR guide RNA targeting Pcsk9 in mouse liver, where the gene is specifically expressed. We found that <3 to 4 days of administration of the virus, the mutagenesis rate of Pcsk9 in the liver was as high as >50%. This resulted in decreased plasma PCSK9 levels, increased hepatic low-density lipoprotein receptor levels, and decreased plasma cholesterol levels (by 35–40%). No off-target mutagenesis was detected in 10 selected sites. Conclusions: Genome editing with the CRISPR–CRISPR-associated 9 system disrupts the Pcsk9 gene in vivo with high efficiency and reduces blood cholesterol levels in mice. This approach may have therapeutic potential for the prevention of cardiovascular disease in humans.

[1]  มณฑล เลิศวรปรีชา Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR): ระบบภูมิคุ้มกัน แบบจำเพาะของแบคทีเรีย , 2014 .

[2]  R. Hammer,et al.  Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Alexander Pertsemlidis,et al.  Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9 , 2005, Nature Genetics.

[4]  J. Weissenbach,et al.  Mutations in PCSK9 cause autosomal dominant hypercholesterolemia , 2003, Nature Genetics.

[5]  A. Marais,et al.  Abstract 340: The C679X Mutation in PCSK9 is Present and Lowers Blood Cholesterol in a Southern African Population , 2006 .

[6]  F. Potier,et al.  What is known , 2003 .

[7]  E. Stein,et al.  Potential of Proprotein Convertase Subtilisin/Kexin Type 9 Based Therapeutics , 2013, Current Atherosclerosis Reports.

[8]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[9]  Jonathan C. Cohen,et al.  Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. , 2006, American journal of human genetics.

[10]  Hao Yin,et al.  Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype , 2014, Nature Biotechnology.

[11]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[12]  Jonathan C. Cohen,et al.  Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. , 2006, The New England journal of medicine.