Autotuning of double dot devices in situ with machine learning.

The current practice of manually tuning quantum dots (QDs) for qubit operation is a relatively time-consuming procedure that is inherently impractical for scaling up and applications. In this work, we report on the in situ implementation of a recently proposed autotuning protocol that combines machine learning (ML) with an optimization routine to navigate the parameter space. In particular, we show that a ML algorithm trained using exclusively simulated data to quantitatively classify the state of a double-QD device can be used to replace human heuristics in the tuning of gate voltages in real devices. We demonstrate active feedback of a functional double-dot device operated at millikelvin temperatures and discuss success rates as a function of the initial conditions and the device performance. Modifications to the training network, fitness function, and optimizer are discussed as a path toward further improvement in the success rate when starting both near and far detuned from the target double-dot range.

[1]  P. T. Eendebak,et al.  Computer-automated tuning of semiconductor double quantum dots into the single-electron regime , 2016, 1603.02274.

[2]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[3]  S. Tarucha,et al.  A>99.9%-fidelity quantum-dot spin qubit with coherence limited by charge noise , 2017, 1708.01454.

[4]  J. P. Dehollain,et al.  A 2 × 2 quantum dot array with controllable inter-dot tunnel couplings , 2018, 1802.05446.

[5]  Michael A. Osborne,et al.  Efficiently measuring a quantum device using machine learning , 2018, npj Quantum Information.

[6]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[7]  Justyna P. Zwolak,et al.  QFlow lite dataset: A machine-learning approach to the charge states in quantum dot experiments , 2018, PloS one.

[8]  D. E. Savage,et al.  A programmable two-qubit quantum processor in silicon , 2017, Nature.

[9]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[10]  Lixing Han,et al.  Implementing the Nelder-Mead simplex algorithm with adaptive parameters , 2010, Computational Optimization and Applications.

[11]  J. Verduijn Silicon Quantum Electronics , 2012 .

[12]  Jacob M. Taylor,et al.  Machine learning techniques for state recognition and auto-tuning in quantum dots , 2017, npj Quantum Information.

[13]  J. R. Petta,et al.  A Reconfigurable Gate Architecture for Si/SiGe Quantum Dots , 2015, 1502.01624.

[14]  J. R. Petta,et al.  Quantum CNOT Gate for Spins in Silicon [1] , 2017 .

[15]  Andreas D. Wieck,et al.  A machine learning approach for automated fine-tuning of semiconductor spin qubits , 2019, Applied Physics Letters.

[16]  J. P. Dehollain,et al.  A two-qubit logic gate in silicon , 2014, Nature.

[17]  L. Vandersypen,et al.  Automated tuning of inter-dot tunnel coupling in double quantum dots , 2018, Applied Physics Letters.

[18]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.

[19]  Mark Friesen,et al.  Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. , 2014, Nature nanotechnology.

[20]  K. Itoh,et al.  A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9% , 2018, Nature Nanotechnology.

[21]  Jacob M. Taylor,et al.  Resonantly driven CNOT gate for electron spins , 2018, Science.

[22]  A. R. Mills,et al.  Computer-automated tuning procedures for semiconductor quantum dot arrays , 2019, Applied Physics Letters.

[23]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[24]  C. Buizert,et al.  Driven coherent oscillations of a single electron spin in a quantum dot , 2006, Nature.

[25]  J. R. Petta,et al.  Scalable gate architecture for a one-dimensional array of semiconductor spin qubits , 2016, 1607.07025.

[26]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[27]  A. Gossard,et al.  Rapid single-shot measurement of a singlet-triplet qubit. , 2009, Physical review letters.

[28]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[29]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[30]  D. E. Savage,et al.  High-fidelity resonant gating of a silicon-based quantum dot hybrid qubit , 2015, npj Quantum Information.

[31]  Dieter Schuh,et al.  Tuning Methods for Semiconductor Spin Qubits , 2018, Physical Review Applied.

[32]  Jacob M. Taylor,et al.  Quantum-dot-based resonant exchange qubit. , 2013, Physical review letters.