Controlling false positive rates in mass-multivariate tests for electromagnetic responses

We address the problem of controlling false positive rates in mass-multivariate tests for electromagnetic responses in compact regions of source space. We show that mass-univariate thresholds based on sensor level multivariate thresholds (approximated using Roy's union–intersection principle) are unduly conservative. We then consider a Bonferroni correction for source level tests based on the number of unique lead-field extrema. For a given source space, the sensor indices corresponding to the maxima and minima (for each dipolar lead field) are listed, and the number of unique extrema is given by the number of unique pairs in this list. Using a multivariate beamformer formulation, we validate this heuristic against empirical permutation thresholds for mass-univariate and mass-multivariate tests (of induced and evoked responses) for a variety of source spaces, using simulated and real data. We also show that the same approximations hold when dealing with a cortical manifold (rather than a volume) and for mass-multivariate minimum norm solutions. We demonstrate that the mass-multivariate framework is not restricted to tests on a single contrast of effects (cf, Roy's maximum root) but also accommodates multivariate effects (cf, Wilk's lambda).

[1]  A. J. Collins,et al.  Introduction To Multivariate Analysis , 1981 .

[2]  L. Galán,et al.  Random Field–Union Intersection tests for EEG/MEG imaging , 2004, NeuroImage.

[3]  Karl J. Friston,et al.  A Multivariate Analysis of Evoked Responses in EEG and MEG Data , 1996, NeuroImage.

[4]  Christophe Lenglet,et al.  ODF reconstruction in q-ball imaging with solid angle consideration , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[5]  Karl J. Friston,et al.  Canonical Source Reconstruction for MEG , 2007, Comput. Intell. Neurosci..

[6]  Karl J. Friston,et al.  Electromagnetic source reconstruction for group studies , 2008, NeuroImage.

[7]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[8]  Juan L. P. Soto,et al.  Detection of event‐related modulations of oscillatory brain activity with multivariate statistical analysis of MEG data , 2009, Human brain mapping.

[9]  W. Penny,et al.  Theta-Coupled Periodic Replay in Working Memory , 2010, Current Biology.

[10]  Richard M. Leahy,et al.  A comparison of random field theory and permutation methods for the statistical analysis of MEG data , 2005, NeuroImage.

[11]  Adrian L. Williams,et al.  Task-Related Changes in Cortical Synchronization Are Spatially Coincident with the Hemodynamic Response , 2002, NeuroImage.

[12]  Karl J. Friston,et al.  Bayesian decoding of brain images , 2008, NeuroImage.

[13]  Gareth R. Barnes,et al.  Group imaging of task-related changes in cortical synchronisation using nonparametric permutation testing , 2003, NeuroImage.

[14]  Richard M. Leahy,et al.  Spatiotemporal Localization of Significant Activation in MEG Using Permutation Tests , 2003, IPMI.

[15]  Karl J. Friston,et al.  Statistical parametric mapping for event-related potentials: I. Generic considerations , 2004, NeuroImage.

[16]  David Poeppel,et al.  Asymptotic SNR of scalar and vector minimum-variance beamformers for neuromagnetic source reconstruction , 2004, IEEE Transactions on Biomedical Engineering.

[17]  W. Drongelen,et al.  Localization of brain electrical activity via linearly constrained minimum variance spatial filtering , 1997, IEEE Transactions on Biomedical Engineering.

[18]  Matthew J. Brookes,et al.  GLM-beamformer method demonstrates stationary field, alpha ERD and gamma ERS co-localisation with fMRI BOLD response in visual cortex , 2005, NeuroImage.

[19]  Felix Carbonell,et al.  Random fields—Union intersection tests for detecting functional connectivity in EEG/MEG imaging , 2009, Human brain mapping.

[20]  J. Sarvas Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. , 1987, Physics in medicine and biology.

[21]  K. D. Singh,et al.  Spectral properties of induced and evoked gamma oscillations in human early visual cortex to moving and stationary stimuli. , 2009, Journal of neurophysiology.

[22]  F. L. D. Silva,et al.  Event-related EEG/MEG synchronization and desynchronization: basic principles , 1999, Clinical Neurophysiology.

[23]  J. Schoffelen,et al.  Source connectivity analysis with MEG and EEG , 2009, Human brain mapping.

[24]  R M Leahy,et al.  A sensor-weighted overlapping-sphere head model and exhaustive head model comparison for MEG. , 1999, Physics in medicine and biology.

[25]  M. Berger,et al.  High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex , 2006, Science.

[26]  G. Barnes,et al.  Statistical flattening of MEG beamformer images , 2003, Human brain mapping.

[27]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[28]  Richard M. Leahy,et al.  Canonical correlation analysis applied to functional connectivity in MEG , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[29]  G. Barnes,et al.  Identifying spatially overlapping local cortical networks with MEG , 2009, Human brain mapping.

[30]  G. Nolte The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors. , 2003, Physics in medicine and biology.

[31]  Matthew J. Brookes,et al.  Optimising experimental design for MEG beamformer imaging , 2008, NeuroImage.

[32]  Se Robinson,et al.  Functional neuroimaging by Synthetic Aperture Magnetometry (SAM) , 1999 .

[33]  Karl J. Friston,et al.  Multiple sparse priors for the M/EEG inverse problem , 2008, NeuroImage.