Nickel nanoparticles individually encapsulated in densified ceramic shells for thermally stable solar energy absorption

Encapsulation of nickel nanoparticles in densified silica nanoshells enhances the thermal stability of spectrally selective absorbers for high-temperature solar-thermal conversion systems.

[1]  J. Nam,et al.  Nonnoble‐Metal‐Based Plasmonic Nanomaterials: Recent Advances and Future Perspectives , 2018, Advanced materials.

[2]  Wei Wang,et al.  Self-doped W–WOx nanocermet multilayer films fabricated by single tungsten target reactive sputtering for selective solar absorption , 2018 .

[3]  B. Korgel,et al.  Silicon-Based Dielectric Metamaterials: Focus on the Current Synthetic Challenges. , 2018, Angewandte Chemie.

[4]  Yu Zhao,et al.  NiCo@SiO2 core-shell catalyst with high activity and long lifetime for CO2 conversion through DRM reaction , 2018 .

[5]  Hiroaki Misawa,et al.  Solid-State Plasmonic Solar Cells. , 2017, Chemical reviews.

[6]  D. Qin,et al.  Enriching Silver Nanocrystals with a Second Noble Metal. , 2017, Accounts of chemical research.

[7]  Yong Huang,et al.  Enhanced Photothermal Bactericidal Activity of the Reduced Graphene Oxide Modified by Cationic Water-Soluble Conjugated Polymer. , 2017, ACS Applied Materials and Interfaces.

[8]  Zhenlin Wang,et al.  Self-assembled spectrum selective plasmonic absorbers with tunable bandwidth for solar energy conversion , 2017 .

[9]  H. Barshilia,et al.  Spectrally selective absorber coating of WAlN/WAlON/Al2O3 for solar thermal applications , 2016 .

[10]  Bin Zhu,et al.  Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation , 2016, Science Advances.

[11]  Arnan Mitchell,et al.  Micro‐ and Nanostructured Surfaces for Selective Solar Absorption , 2015 .

[12]  N. P. Barradas,et al.  Solar selective absorbers based on Al2O3:W cermets and AlSiN/AlSiON layers , 2015 .

[13]  Suljo Linic,et al.  Photochemical transformations on plasmonic metal nanoparticles. , 2015, Nature materials.

[14]  Xiaojuan Yu,et al.  Air-stable NiFeCrOx selective absorber for mid-to-high temperature application , 2015 .

[15]  B. Fan,et al.  Investigation of the electromagnetic absorption properties of Ni@TiO2 and Ni@SiO2 composite microspheres with core-shell structure. , 2015, Physical chemistry chemical physics : PCCP.

[16]  Gang Chen,et al.  Enhanced Thermal Stability of W‐Ni‐Al2O3 Cermet‐Based Spectrally Selective Solar Absorbers with Tungsten Infrared Reflectors , 2015 .

[17]  Yong Huang,et al.  The enhanced photothermal effect of graphene/conjugated polymer composites: photoinduced energy transfer and applications in photocontrolled switches. , 2014, Chemical communications.

[18]  Yadong Yin,et al.  Ligand-exchange assisted formation of Au/TiO2 Schottky contact for visible-light photocatalysis. , 2014, Nano letters.

[19]  Jae-Young Jung,et al.  Si boride-coated Si nanoparticles with improved thermal oxidation resistance , 2014 .

[20]  Miaofang Chi,et al.  Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au. , 2014, Journal of the American Chemical Society.

[21]  S. B. Krupanidhi,et al.  Carbon Nanotube‐Based Tandem Absorber with Tunable Spectral Selectivity: Transition from Near‐Perfect Blackbody Absorber to Solar Selective Absorber , 2014, Advanced materials.

[22]  Gang Chen,et al.  A review of cermet-based spectrally selective solar absorbers , 2014 .

[23]  Cong Wang,et al.  Improvement of thermal stability in the solar selective absorbing Mo–Al2O3 coating , 2013 .

[24]  Aaron R. Halpern,et al.  Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances. , 2013, ACS nano.

[25]  Zhenxiang Li,et al.  Aqueous solution-chemical derived Ni–Al2O3 solar selective absorbing coatings , 2012 .

[26]  H. Barshilia,et al.  Design and fabrication of highly thermally stable HfMoN/HfON/Al2O3 tandem absorber for solar thermal power generation applications , 2012 .

[27]  Jimin Xie,et al.  Facile route fabrication of nano-Ni core mesoporous-silica shell particles with high catalytic activity towards 4-nitrophenol reduction , 2012 .

[28]  S. Paria,et al.  Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. , 2012, Chemical reviews.

[29]  Ilkeun Lee,et al.  Mesoporous Anatase Titania Hollow Nanostructures though Silica‐Protected Calcination , 2012 .

[30]  J. Nogués,et al.  Plasmonic nickel nanoantennas. , 2011, Small.

[31]  Claire M. Cobley,et al.  Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. , 2011, Chemical reviews.

[32]  Younan Xia,et al.  Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties. , 2010, ACS nano.

[33]  Tierui Zhang,et al.  Control over the permeation of silica nanoshells by surface-protected etching with water. , 2010, Physical chemistry chemical physics : PCCP.

[34]  Ilkeun Lee,et al.  Surface‐Protected Etching of Mesoporous Oxide Shells for the Stabilization of Metal Nanocatalysts , 2010 .

[35]  M. Sastry,et al.  Preparation of Nearly Monodisperse Nickel Nanoparticles by a Facile Solution Based Methodology and Their Ordered Assemblies , 2009 .

[36]  Ye Cai,et al.  Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas , 2007, Nature.

[37]  Ewa Wäckelgård,et al.  Optimization of solar absorbing three-layer coatings , 2006 .

[38]  C. Serna,et al.  Synthesis of monodisperse superparamagnetic Fe/silica nanospherical composites. , 2003, Journal of the American Chemical Society.

[39]  Younan Xia,et al.  Synthesis and Self-Assembly of Au@SiO2 Core−Shell Colloids , 2002 .

[40]  Younan Xia,et al.  Silver Nanowires Can Be Directly Coated with Amorphous Silica To Generate Well-Controlled Coaxial Nanocables of Silver/Silica , 2002 .

[41]  Qi-Chu Zhang,et al.  Recent progress in high-temperature solar selective coatings , 2000 .

[42]  E. R. Nightingale,et al.  PHENOMENOLOGICAL THEORY OF ION SOLVATION. EFFECTIVE RADII OF HYDRATED IONS , 1959 .